Inicio  /  Aerospace  /  Vol: 11 Par: 1 (2024)  /  Artículo
ARTÍCULO
TITULO

Flight-Data-Based High-Fidelity System Identification of DJI M600 Pro Hexacopter

Péter Bauer and Mihály Nagy    

Resumen

Research and industrial application can require custom high-level controllers for industrial drones. Thus, this paper presents the high-fidelity dynamic and control model identification of the DJI M600 Pro hexacopter. This is a widely used multicopter in the research and industrial community due to its high payload capability and reliability. To support these communities, the focus of control model identification was on the exploration and implementation of DJI Onboard Software Development Kit (OSDK) functionalities, also including some unconventional special modes. Thus, the resulting model can be controlled with the same OSDK functionalities as the real drone, making control development and application time effective. First, the hardware and software structure of the additional DJI M600 onboard system are introduced. Then, the postulated dynamic and control system models are shown. Next, real flight test campaigns generating data for system identification are presented. Then, the mass and inertial properties are estimated for TB47S and TB48S battery sets and the custom Forerunner UAV payload. Dynamic system model identification includes the aerodynamic effects and considers hover, vertical, and horizontal forces together with static horizontal wind components and finally the rotational moments and dynamics. The control system components were identified following the structure of OSDK, including vertical, horizontal, and yaw loops. After identification, the model was validated and refined based on an unused flight test and software-in-the-loop simulation data. The simulation is provided by DJI and was also compared to real flight results. This comparison showed that the DJI simulation covers the dynamics of the real drone well, but it requires being connected to the drone and needs the controllers onboard to be implemented in advance, which limits applicability and increases development time. This was another motivation to introduce a standalone simulation in Matlab Simulink, which covers all the important modes of OSDK control and can be run solely in Matlab without any hardware support. The constructed model will be published for the benefit of the research and industrial community.

 Artículos similares

       
 
Airam Sausen, Paulo Sergio Sausen, Manuel Reimbold, Mauricio de Campos (Author)     Pág. 441 - 449

 
Anni Zhao, Arash Toudeshki, Reza Ehsani, Joshua H. Viers and Jian-Qiao Sun    
The Delta robot is an over-actuated parallel robot with highly nonlinear kinematics and dynamics. Designing the control for a Delta robot to carry out various operations is a challenging task. Various advanced control algorithms, such as adaptive control... ver más
Revista: Algorithms

 
Pablo Brusola, Sergio Garcia-Nieto, Jose Vicente Salcedo, Miguel Martinez and Robert H. Bishop    
This paper presents a mathematical modeling approach utilizing a fuzzy modeling framework for fixed-wing aircraft systems with the goal of creating a highly desirable mathematical representation for model-based control design applications. The starting p... ver más
Revista: Aerospace

 
Lin Yang, Yansong Wang, Lei Wei and Yao Chen    
The spaceborne solar observation system is crucial for the study of space phenomena such as solar flares, which requires high tracking accuracy. This study presents a coupling model that integrates mechanical, electrical, and control models to investigat... ver más
Revista: Aerospace

 
Changkun Yu, Zhigang Wu and Chao Yang    
Slender vehicles often encounter significant aeroservoelastic challenges due to their low elastic mode frequencies and wide servo control system bandwidths. Traditional analysis methods have limitations, including low modeling accuracy for real vehicles ... ver más
Revista: Aerospace