Inicio  /  Aerospace  /  Vol: 7 Par: 10 (2020)  /  Artículo
ARTÍCULO
TITULO

New Reliability Studies of Data-Driven Aircraft Trajectory Prediction

Seyed Mohammad Hashemi    
Ruxandra Mihaela Botez and Teodor Lucian Grigorie    

Resumen

Two main factors, including regression accuracy and adversarial attack robustness, of six trajectory prediction models are measured in this paper using the traffic flow management system (TFMS) public dataset of fixed-wing aircraft trajectories in a specific route provided by the Federal Aviation Administration. Six data-driven regressors with their desired architectures, from basic conventional to advanced deep learning, are explored in terms of the accuracy and reliability of their predicted trajectories. The main contribution of the paper is that the existence of adversarial samples was characterized for an aircraft trajectory problem, which is recast as a regression task in this paper. In other words, although data-driven algorithms are currently the best regressors, it is shown that they can be attacked by adversarial samples. Adversarial samples are similar to training samples; however, they can cause finely trained regressors to make incorrect predictions, which poses a security concern for learning-based trajectory prediction algorithms. It is shown that although deep-learning-based algorithms (e.g., long short-term memory (LSTM)) have higher regression accuracy with respect to conventional classifiers (e.g., support vector regression (SVR)), they are more sensitive to crafted states, which can be carefully manipulated even to redirect their predicted states towards incorrect states. This fact poses a real security issue for aircraft as adversarial attacks can result in intentional and purposely designed collisions of built-in systems that can include any type of learning-based trajectory predictor.

 Artículos similares

       
 
Joana Carneiro, Dália Loureiro, Marta Cabral and Dídia Covas    
This paper presents and demonstrates a novel scenario-building methodology that integrates contextual and future time uncertainty into the performance assessment of water distribution networks (WDNs). A three-step approach is proposed: (i) System context... ver más
Revista: Water

 
Majdi Sukkar, Madhu Shukla, Dinesh Kumar, Vassilis C. Gerogiannis, Andreas Kanavos and Biswaranjan Acharya    
Effective collision risk reduction in autonomous vehicles relies on robust and straightforward pedestrian tracking. Challenges posed by occlusion and switching scenarios significantly impede the reliability of pedestrian tracking. In the current study, w... ver más
Revista: Information

 
Tiankai Yang, Zhenzhong Sun, Yongliang Liang and Lichuan Liu    
With the rapid development of global trade, a large number of goods and resources are imported and exported via seaports. Multiple thermal loads and renewable energy merge into seaports, making the energy supply and demand structure increasingly complex.... ver más

 
Diya Wang, Yonglin Zhang, Lixin Wu, Yupeng Tai, Haibin Wang, Jun Wang, Fabrice Meriaudeau and Fan Yang    
In recent years, the study of deep learning techniques for underwater acoustic channel estimation has gained widespread attention. However, existing neural network channel estimation methods often overfit to training dataset noise levels, leading to dimi... ver más

 
Cundong Xu, Junjiao Tian, Guoxia Wang, Haidong Lian, Rongrong Wang and Xiaomeng Hu    
The vortices, backflow, and siltation caused by sediment-laden flow are detrimental to the safe and efficient operation of pumping stations. To explore the effects of water?sediment two-phase flow on the velocity field, vorticity field, and sediment dist... ver más
Revista: Water