Inicio  /  Aerospace  /  Vol: 9 Par: 3 (2022)  /  Artículo
ARTÍCULO
TITULO

Aircraft Propeller Design through Constrained Aero-Structural Particle Swarm Optimization

José D. Hoyos    
Jesús H. Jiménez    
Camilo Echavarría    
Juan P. Alvarado and Germán Urrea    

Resumen

An aero-structural algorithm to reduce the energy consumption of a propeller-driven aircraft is developed through a propeller design method coupled with a Particle Swarm Optimization (PSO). A wide range of propeller parameters is considered in the optimization, including the geometry of the airfoil at each propeller section. The propeller performance prediction tool employs a convergence improved Blade Element Momentum Theory fed by airfoil aerodynamic characteristics obtained from XFOIL and a validated OpenFOAM. A stall angle correction is estimated from experimental NACA 4-digits data and employed where convergence issues emerge. The aerodynamic data are corrected to account for compressibility, three-dimensional, viscous, and Reynolds number effects. The coefficients for the rotational corrections are proposed from experimental data fitting. A structural model based on Euler-Bernoulli beam theory is employed and validated against Finite Element Analysis, while the impact of centrifugal forces is discussed. A case of study is carried out where the chord and pitch distributions are compared to minimal losses distribution from vortex theory. Wind tunnel tests were performed with printed propellers to conclude the feasibility of the entire routine and the differences between XFOIL and CFD optimal propellers. Finally, the optimal CFD propeller is compared against a commercial propeller with the same diameter, pitch, and operational conditions, showing higher thrust and efficiency.

 Artículos similares

       
 
Salvatore Corcione, Vincenzo Cusati, Danilo Ciliberti and Fabrizio Nicolosi    
This paper deals with the estimation of propulsive effects for a three-lifting surface turboprop aircraft concept, with rear engine installation at the horizontal tail tips, conceived to carry up to 130 passengers. This work is focused on how the propuls... ver más
Revista: Aerospace

 
Dongwen Xue, Qun Yan, Zhuohan Li and Kai Wei    
In this paper, a multidisciplinary optimization design method and its verification of low-noise aircraft propellers considering aerodynamics, noise, and structural strength were carried out to further reduce the aerodynamic noise of the aircraft propelle... ver más
Revista: Aerospace

 
Enrico Cestino, Davide Pisu, Vito Sapienza, Lorenzo Chesta and Valentina Martilla    
A new Range Equation for a hybrid-electric propeller-driven aircraft was formulated by an original derivation based on the comparison of Virtual Electrical Aircraft (VEA) and Virtual Thermal Aircraft (VTA) range equations. The new formulation makes it po... ver más
Revista: Aerospace

 
Anaïs Luisa Habermann, Moritz Georg Kolb, Philipp Maas, Hagen Kellermann, Carsten Rischmüller, Fabian Peter and Arne Seitz    
Hybrid-Electric Propulsion (HEP) could be part of the solution to decrease emissions associated with regional commercial aviation. This study presents results for the aircraft level fuel reduction potential of a regional turboprop concept with an HEP arc... ver más
Revista: Aerospace

 
Nicola Russo, Aniello Daniele Marano, Giuseppe Maurizio Gagliardi, Michele Guida, Tiziano Polito and Francesco Marulo    
Multirotors are gaining great importance in the layout of innovative and more agile mobility. In this framework, a possible solution to developing an aircraft complying with the stringent size requirements characterizing this type of application may be a... ver más
Revista: Aerospace