Inicio  /  Aerospace  /  Vol: 10 Par: 8 (2023)  /  Artículo
ARTÍCULO
TITULO

EVTOL Tilt-Wing Aircraft Design under Uncertainty Using a Multidisciplinary Possibilistic Approach

Mohsen Rostami    
Julian Bardin    
Daniel Neufeld and Joon Chung    

Resumen

Recent development in Electric Vertical Take-off and Landing (eVTOL) aircraft makes it a popular design approach for urban air mobility (UAM). When designing these configurations, due to the uncertainty present in semi-empirical estimations, often used for aerodynamic characteristics during the conceptual design phase, results can only be trusted to approximately 80% accuracy. Accordingly, an optimized aircraft using semi-empirical estimations and deterministic multi-disciplinary design optimization (MDO) approaches can be at risk of not being certifiable in the detailed design phase of the life cycle. The focus of this study was to implement a robust and efficient possibility-based design optimization (PBDO) method for the MDO of an eVTOL tilt-wing aircraft in the conceptual design phase, using existing conventional designs as an initial configuration. As implemented, the optimization framework utilizes a deterministic gradient-based optimizer, run sequentially with a possibility assessment algorithm, to select an optimal design. To achieve this, the uncertainties which arise from multi-fidelity calculations, such as semi-empirical methods, are considered and used to modify the final design such that its viability is guaranteed in the detailed design phase. With respect to various requirements, including trim, stability, and control behaviors, the optimized eVTOL tilt-wing aircraft design offers the preferred results which ensure that airworthiness criteria are met whilst complying with predefined constraints. The proposed approach may be used to revise currently available light aircraft and develop eVTOL versions from the original light aircraft. The resulting aircraft is not only an optimized layout but one where the stability of the eVTOL tilt-wing aircraft has been guaranteed.

 Artículos similares

       
 
Pietro Vivalda and Marco Fioriti    
The growing environmental public awareness and the consequential pressure on every industrial field has made environmental impact assessment increasingly important in the last few years. In this scope, the most established tool used in the specialized li... ver más
Revista: Aerospace

 
Angelos Filippatos, Dionysios Markatos, Georgios Tzortzinis, Kaushik Abhyankar, Sonia Malefaki, Maik Gude and Spiros Pantelakis    
The current prevailing trend in design across key sectors prioritizes eco-design, emphasizing considerations of environmental aspects in the design process. The present work aims to take a significant leap forward by proposing a design process where sust... ver más
Revista: Aerospace

 
Rohan S. Sharma and Serhat Hosder    
The intent of this work was to investigate the feasibility of developing machine learning models for calculating values of airplane configuration design variables when provided time-series, mission-informed performance data. Shallow artificial neural net... ver más
Revista: Aerospace

 
Ulrich Carsten Johannes Rischmüller, Alexandros Lessis, Patrick Egerer and Mirko Hornung    
A wide range of aircraft propulsion technologies is being investigated in current research to reduce the environmental impact of commercial aviation. As the implementation of purely hydrogen-powered aircraft may encounter various challenges on the airpor... ver más
Revista: Aerospace

 
Pietro Roncioni, Marco Marini, Oscar Gori, Roberta Fusaro and Nicole Viola    
The request for faster and greener civil aviation is urging the worldwide scientific community and aerospace industry to develop a new generation of supersonic aircraft, which are expected to be environmentally sustainable and to guarantee a high-level p... ver más
Revista: Aerospace