Inicio  /  Aerospace  /  Vol: 4 Núm: 3 Par: Septemb (2017)  /  Artículo
ARTÍCULO
TITULO

Constructal Theory and Aeroelastic Design of Flexible Flying Wing Aircraft

Pezhman Mardanpour and Siavash Rastkar    

Resumen

The aeroelastic behavior of high-aspect-ratio very flexible flying wing is highly affected by the geometric nonlinearities of the aircraft structure. This paper reviews the findings on how these nonlinearities influence the structural and flight dynamics, and it shows that the aeroelastic flight envelope could significantly be extended with proper choices of design parameters such as engine placement. Moreover, in order to investigate the physics behind the effects of design parameters, constructal theory of design is reviewed. The constructal theory advances the philosophy of design as science, it states that the better structural design emerges when stress flow strangulation is avoided. Furthermore, it shows that airplanes, through their evolution, have obeyed theoretical allometric rules that unite their designs.

 Artículos similares

       
 
Zhiyuan Hu, Peng Yu, Guohua Xu, Yongjie Shi, Feng Gu and Aijun Zou    
Tiltrotors permit aircrafts to operate vertically with lift, yet convert to ordinary forward flight with thrust. The challenge is to design a tiltrotor blade yielding maximum lift and thrust that converts smoothly without losing integrity or efficiency. ... ver más
Revista: Aerospace

 
Francesco Toffol and Sergio Ricci    
This paper presents a preliminary study on the improvement of the fuel efficiency of a civil transport aircraft, focusing on the aero-elastic optimization of an increased aspect ratio wingbox. The wing is stretched, increasing its aspect ratio, and a tra... ver más
Revista: Aerospace

 
Victor E. L. Gasparetto, Jackson Reid, William P. Parsons, Mostafa S. A. ElSayed, Mohamed Saad, Stephen Shieldand, Gary L. Brown and Lawrence M. Hilliard    
This paper proposes a design procedure to determine the optimal configuration of multi-degrees of freedom (MDOF) multiple tuned mass dampers (MTMD) to mitigate the global dynamic aeroelastic response of aerospace structures. The computation of the aerody... ver más
Revista: Aerospace

 
Francesco Toffol and Sergio Ricci    
This paper presents the design of an innovative wingtip device actively actuated to control the aeroelastic loads, with a focus on the gust load alleviation. It summarizes the work carried out in the Clean Sky 2 AIRGREEN2 project, where the device was de... ver más
Revista: Aerospace

 
Faisal Mahmood, Seyed M. Hashemi and Hekmat Alighanbari    
Growing concerns over the CO2 footprint due the exponential demand of the aviation industry, along with the requirements for high aerodynamic performance, cost saving, and manoeuvrability during different phases of a flight, pave the path towards adaptab... ver más
Revista: Aerospace