Inicio  /  Coatings  /  Vol: 8 Núm: 2 Par: Februar (2018)  /  Artículo
ARTÍCULO
TITULO

Arc-Sprayed Fe-Based Coatings from Cored Wires for Wear and Corrosion Protection in Power Engineering

Korobov Yury    
Michael Fili?pov    
Aleksey Makarov    
Irina Malygina    
Natalia Soboleva    
Davide Fantozzi    
Milanti Andrea    
Heli Koivuluoto and Petri Vuoristo    

Resumen

High wear and corrosion of parts lead to an increase in operating costs at thermal power plants. The present paper shows a possible solution to this problem through the arc spraying of protective coatings. Cored wires of the base alloying system Fe-Cr-C were used as a feedstock. Rise of wear- and heat-resistance of the coatings was achieved by additional alloying with Al, B, Ti, and Y. The wear and heat resistance of the coatings were tested via a two-body wear test accompanied by microhardness measurement and the gravimetric method, respectively. A high-temperature corrosion test was performed at 550 °C under KCl salt deposition. The porosity and adhesion strengths of the coatings were also evaluated. The microstructure was investigated with a scanning electron microscope (SEM) unit equipped with an energy dispersive X-ray (EDX) microanalyzer, and the phase composition was assessed by X-ray diffractometry. The test results showed the positive influence of additional alloying with Y on the coating properties. A comparison with commercial boiler materials showed that the coatings have the same level of heat resistance as austenite steels and are an order of magnitude higher than that of pearlite and martensite-ferrite steels. The coatings can be applied to wear- and heat-resistant applications at 20?700 °C.

 Artículos similares