Inicio  /  Energies  /  Vol: 12 Núm: 6 Par: March-2 (2019)  /  Artículo
ARTÍCULO
TITULO

A Novel Approach to Stabilize Foam Using Fluorinated Surfactants

Resumen

Selection of surfactants for enhanced oil recovery and other upstream applications is a challenging task. For enhanced oil recovery applications, a surfactant should be thermally stable, compatible with reservoir brine, and have lower adsorption on reservoir rock, have high foamability and foam stability, and should be economically viable. Foam improves the oil recovery by increasing the viscosity of the displacing fluid and by reducing the capillary forces due to a reduction in interfacial tension. In this work, foamability and foam stability of two different surfactants were evaluated using a dynamic foam analyzer. These surfactants were fluorinated zwitterionic, and hydrocarbon zwitterionic surfactants. The effect of various parameters such as surfactant type and structure, temperature, salinity, and type of injected gas was investigated on foamability and foam stability. The foamability was assessed using the volume of foam produced by injecting a constant volume of gas and foam stability was determined by half-life time. The maximum foam generation was obtained using hydrocarbon zwitterionic surfactant. However, the foam generated using fluorinated zwitterionic surfactant was more stable. A mixture of zwitterionic fluorinated and hydrocarbon fluorinated surfactant showed better foam generation and foam stability. The foam generated using CO2 has less stability compared to the foam generated using air injection. Presence of salts increases the foam stability and foam generation. At high temperature, the foamability of the surfactants increased. However, the foam stability was reduced at high temperature for all type of surfactants. This study helps in optimizing the surfactant formulations consisting of a fluorinated and hydrocarbon zwitterionic surfactant for foam injections.

 Artículos similares

       
 
Zhenwen He, Xianzhen Liu and Chunfeng Zhang    
Three-dimensional voxel models are widely applied in various fields such as 3D imaging, industrial design, and medical imaging. The advancement of 3D modeling techniques and measurement devices has made the generation of three-dimensional models more con... ver más

 
Zhixin Li, Song Ji, Dazhao Fan, Zhen Yan, Fengyi Wang and Ren Wang    
Accurate building geometry information is crucial for urban planning in constrained spaces, fueling the growing demand for large-scale, high-precision 3D city modeling. Traditional methods like oblique photogrammetry and LiDAR prove time consuming and ex... ver más

 
Sujin Woo, Kyungmo Kang and Sangyun Lee    
In 2021, the South Korean government highlighted the Green Remodeling Project for Public Buildings as a crucial initiative for reducing building emissions and tackling post-COVID challenges. Aimed at enhancing energy efficiency and living conditions in p... ver más
Revista: Buildings

 
Dejiang Wang, Quanming Jiang and Jinzheng Liu    
In the field of building information modeling (BIM), converting existing buildings into BIM by using orthophotos with digital surface models (DSMs) is a critical technical challenge. Currently, the BIM reconstruction process is hampered by the inadequate... ver más
Revista: Buildings

 
Tianyi Yang, Marcus White, Ruby Lipson-Smith, Michelle M. Shannon and Mehrnoush Latifi    
Changing the physical environment of healthcare facilities can positively impact patient outcomes. Virtual reality (VR) offers the potential to understand how healthcare environment design impacts users? perception, particularly among those with brain in... ver más
Revista: Buildings