Redirigiendo al acceso original de articulo en 16 segundos...
Inicio  /  Water  /  Vol: 15 Par: 11 (2023)  /  Artículo
ARTÍCULO
TITULO

A Prediction Model to Cost-Optimize Clean-Out of Permeable Interlocking Concrete Pavers

Sachet Siwakoti    
Andrew Binns    
Andrea Bradford    
Hossein Bonakdari and Bahram Gharabaghi    

Resumen

Permeable Interlocking Concrete Paver (PICP) systems provide onsite stormwater management by detaining runoff and removing contaminants. However, a major problem with PICPs is the significant maintenance cost associated with their clean-out to restore the original functionality, which discourages landowners and municipalities from adopting the systems. A combination of laboratory experiments and machine-learning techniques are applied to address this challenge. A total of 376 laboratory experiments were conducted to investigate four independent variables (cleaning equipment speed over the pavement, air speed in the cleaning jets, top opening width of the cupule, and filter media gradation) that affect the cleaning of PICPs. The Buckingham Pi-Theorem was used to express the four main input variables in three dimension-less parameters. This current investigation provides a novel understanding of variables affecting the sustainable and economically feasible maintenance of PICPs. A new model is derived to more accurately predict the percentage of mass removal from PICPs during clean-out using a machine-learning technique. The Group Method of Data Handling (GMDH) model exhibits high performance, with a correlation coefficient (R2) of 0.87 for both the training and testing stages. The established simple explicit equation can be applied to optimize the maintenance costs for industrial applications of Regenerative Air Street Sweepers for sustainable and cost-effective PICP maintenance. Pavements with larger surface areas are found to have lower maintenance costs ($/m2/year) compared to the ones with smaller surface areas. This study estimates $0.32/m2/year and $0.50/m2/year to maintain pavements with larger (5000 m2) and smaller (1000 m2) surface areas, respectively.

 Artículos similares

       
 
Bahareh Kalantar, Husam A. H. Al-Najjar, Biswajeet Pradhan, Vahideh Saeidi, Alfian Abdul Halin, Naonori Ueda and Seyed Amir Naghibi    
Assessment of the most appropriate groundwater conditioning factors (GCFs) is essential when performing analyses for groundwater potential mapping. For this reason, in this work, we look at three statistical factor analysis methods?Variance Inflation Fac... ver más
Revista: Water

 
Mengzhen Wu, Xianghong Xu, Haochen Zhang, Rui Zhou and Jianshan Wang    
As a traditional numerical simulation method for pantograph?catenary interaction research, the pantograph?catenary finite element model cannot be applied to the real-time monitoring of pantograph?catenary contact force, and the computational cost require... ver más
Revista: Applied Sciences

 
Xiaotian Luo, Cong Yin, Yueqiang Sun, Weihua Bai, Wei Li and Hongqing Song    
Deep soil moisture data have wide applications in fields such as engineering construction and agricultural production. Therefore, achieving the real-time monitoring of deep soil moisture is of significant importance. Current soil monitoring methods face ... ver más
Revista: Water

 
Yongen Lin, Dagang Wang, Tao Jiang and Aiqing Kang    
Reliable streamflow forecasting is a determining factor for water resource planning and flood control. To better understand the strengths and weaknesses of newly proposed methods in streamflow forecasting and facilitate comparisons of different research ... ver más
Revista: Water

 
Rongliang Cheng, Xiaofeng Han and Zhiqiang Wu    
It is of great significance to identify the spatiotemporal stress distribution characteristics to ensure the safety of a super-high arch dam during the initial operation stage. Taking the 285.5 m-high Xiluodu Dam as an example, the spatiotemporal distrib... ver más
Revista: Water