Redirigiendo al acceso original de articulo en 21 segundos...
ARTÍCULO
TITULO

Motion Control for Autonomous Navigation in Blue and Narrow Waters Using Switched Controllers

Angelo Alessandri    
Silvia Donnarumma    
Michele Martelli and Stefano Vignolo    

Resumen

Autonomous ships represent one of the new frontiers of technological innovation in marine engineering, which demand the development of innovative control systems to guarantee efficient and safe navigation of vessels. A convenient control system should be able to command the several actuators installed on board in different conditions?for instance, during oceanic navigation, harbor approach, narrow channels, and crowed areas. Such tasks are accomplished by different switching controllers for high and low speed motion, which have to be orchestrated to ensure an effective maneuvering. An approach to the design of hierarchies of controllers for maneuvering and navigation of ships equipped with a standard propulsion configuration in both blue and narrow water is proposed. Different levels of control, from global to local, are defined and integrated to steer the vessel in such a way to increase the maneuvering capability in various scenarios.

 Artículos similares

       
 
Fuyin Cui, Shuling Chen, Hongbin Hao, Changzhi Han, Ruidong Ni and Yueyue Zhuo    
To address the unstable motion of a tension leg platform (TLP) for floating wind turbines in various sea conditions, an improved method of incorporating a tuned liquid multi-column damper (TLMCD) into the TLP foundation is proposed. In order to evaluate ... ver más

 
Bing Han, Zaiyu Duan, Zhouhua Peng and Yuhang Chen    
A fuzzy control improvement method is proposed with an integral line-of-sight (ILOS) guidance principle to meet the needs of autonomous navigation and high-precision control of ship trajectories. Firstly, a three-degree-of-freedom ship motion model was e... ver más

 
Giacomo Borelli, Gabriella Gaias and Camilla Colombo    
In recent years, the interest in proximity operations to uncooperative and non-collaborative objects has been growing and and demanding for specific technology advances to tackle these challenging cases of in-orbit servicing and removal missions. Indeed,... ver más
Revista: Aerospace

 
Gokhan Gungor and Mehdi Afshari    
In this study, a sensorimotor controller is designed to characterize the required muscle force to enable a robotics system to perform a human-like circular movement. When the appropriate muscle internal forces are chosen, the arm end-point tracks the des... ver más
Revista: Applied Sciences

 
Van Minh Nguyen, Emma Sandidge, Trupti Mahendrakar and Ryan T. White    
The accelerating deployment of spacecraft in orbit has generated interest in on-orbit servicing (OOS), inspection of spacecraft, and active debris removal (ADR). Such missions require precise rendezvous and proximity operations in the vicinity of non-coo... ver más
Revista: Aerospace