Redirigiendo al acceso original de articulo en 16 segundos...
Inicio  /  Applied Sciences  /  Vol: 9 Par: 22 (2019)  /  Artículo
ARTÍCULO
TITULO

Numerical Analysis and Characterization of Surface Pressure Fluctuations of High-Speed Trains Using Wavenumber?Frequency Analysis

Songjune Lee    
Cheolung Cheong    
Jaehwan Kim and Byung-hee Kim    

Resumen

The high-speed train interior noise induced by the exterior flow field is one of the critical issues for product developers to consider during design. The reliable numerical prediction of noise in a passenger cabin due to exterior flow requires the decomposition of surface pressure fluctuations into the hydrodynamic (incompressible) and the acoustic (compressible) components, as well as the accurate computation of the near aeroacoustic field, since the transmission characteristics of incompressible and compressible pressure waves through the wall panel of the cabin are quite different from each other. In this paper, a systematic numerical methodology is presented to obtain separate incompressible and compressible surface pressure fields in the wavenumber?frequency and space?time domains. First, large eddy simulation techniques were employed to predict the exterior flow field, including a highly-resolved acoustic near-field, around a high-speed train running at the speed of 300 km/h in an open field. Pressure fluctuations on the train surface were then decomposed into incompressible and compressible fluctuations using the wavenumber?frequency analysis. Finally, the separated incompressible and compressible surface pressure fields were obtained from the inverse Fourier transform of the wavenumber?frequency spectrum. The current method was illustratively applied to the high-speed train HEMU-430X running at a speed of 300 km/h in an open field. The results showed that the separate incompressible and compressible surface pressure fields in the time?space domain could be obtained together with the associated aerodynamic source mechanism. The power levels due to each pressure field were also estimated, and these can be directly used for interior noise prediction.

 Artículos similares

       
 
Omer Faruk Can, Nevin Celik, Filiz Ozgen, Celal Kistak and Ali Taskiran    
In this study, a numerical and experimental analysis of a solar collector with roughness elements in the form of stainless-steel scourers on the absorber surface is presented. According to the location type and number of the stainless steel scourers, the... ver más
Revista: Applied Sciences

 
Abdul Basit, Safeer Abbas, Muhammad Mubashir Ajmal, Ubaid Ahmad Mughal, Syed Minhaj Saleem Kazmi and Muhammad Junaid Munir    
This study undertakes a comprehensive experimental and numerical analysis of the structural integrity of buried RC sewerage pipes, focusing on the performance of two distinct jointing materials: cement mortar and non-shrinkage grout. Through joint shear ... ver más
Revista: Infrastructures

 
Mahmoud T. Nawar, Ahmed S. Eisa, Mohamed T. Elshazli, Yasser E. Ibrahim and Ayman El-Zohairy    
Revista: Infrastructures

 
Rupali Sarmah, Troyee Tanu Dutta and K. Seshagiri Rao    
Revista: Infrastructures

 
Mengxiang Li, Guo Wang, Kun Liu, Yue Lu and Jiaxia Wang    
The safety assessment of ship cargo securing systems is of significant importance in preventing casualties, vessel instability, and economic losses resulting from the failure of securing systems during transportation in adverse sea conditions. In this st... ver más