Redirigiendo al acceso original de articulo en 16 segundos...
ARTÍCULO
TITULO

Design and Performance Evaluation of an Enclosed Inertial Wave Energy Converter with a Nonlinear Stiffness Mechanism

Jian Qin    
Zhenquan Zhang    
Xuening Song    
Shuting Huang    
Yanjun Liu and Gang Xue    

Resumen

In order to enhance the power generation efficiency and reliability of wave energy converters (WECs), an enclosed inertial WEC with a magnetic nonlinear stiffness mechanism (nonlinear EIWEC) is proposed in this paper. A mathematical model of the nonlinear EIWEC was established based on the Cummins equation and the equivalent magnetic charge method, and the joint simulations were carried out using MATLAB/Simulink 2020 and AMESim 2020 softwares. The effect of the magnetic nonlinear stiffness mechanism (NSM) on the performance of the EIWEC system was investigated. The results show that the nonlinear negative stiffness property of NSM can significantly improve the motion response and output power of EIWEC under low-frequency waves. Compared to EIWEC without NSM (linear EIWEC), nonlinear EIWEC has a higher generation efficiency and wider frequency bandwidth. Additionally, the effects of linear spring, internal mass body, and hydraulic power take-off (PTO) system parameters on the energy conversion capability of the system were analyzed to provide a reference for the design of nonlinear EIWECs. In general, the proposed nonlinear EIWEC could provide good development potential for the scale utilization of wave energy resources.

 Artículos similares

       
 
Jose M. Bernal-de-Lázaro     Pág. 74 - 81
This article summarizes the main contributions of the PhD thesis titled: "Application of learning techniques based on kernel methods for the fault diagnosis in Industrial processes". This thesis focuses on the analysis and design of fault diagnosis syste... ver más

 
Yannian Yang, Yu Liang, Stefan Pröbsting, Pengyu Li, Haoyu Zhang, Benxu Huang, Chaofan Liu, Hailong Pei and Bernd R. Noack    
In the near future, urban air mobility (UAM) will let an old dream of human society come true: affordable and fast air transportation for almost everyone. Among the various existing designs, the multicopter configuration best combines the advantages of c... ver más
Revista: Aerospace

 
Zhixiong Chen, Tianshu Cao, Pengjiao Wang and Junhao Feng    
Wireless and power line communication hybrid relay technology can realize complementary advantages and comprehensively improve the communication coverage and performance of power Internet of Things. In order to study the mechanism of the physical layer a... ver más
Revista: Applied Sciences

 
Zeliang Liu, Rui Zhao, Chenglin Tao, Yuan Wang and Xi Liang    
Lattice structures are characterized by a light weight, high strength, and high stiffness, and have a wide range of applications in the aerospace field. Node stress concentration is a key factor affecting the mechanical performance of lattice structures.... ver más
Revista: Aerospace

 
Hamza Alkuime, Emad Kassem, Khaled A. Alshraiedeh, Manaf Bustanji, Ahmad Aleih and Fawzi Abukhamseh    
This study aims to develop a framework to incorporate Waste Cooking Oil (WCO) into asphalt mixtures. Such a framework utilizes a Balanced Mix Design (BMD) approach to ensure adequate resistance to cracking and rutting. Transportation agencies can use the... ver más
Revista: Applied Sciences