Resumen
Because of its threat to the quality of freshwater resources and human health, arsenic (As) pollution is important to scientific communities and policymakers around the world. The Mekong Delta, Vietnam, is one hotspot of As pollution. Its risk assessment of different environmental components has been well documented; however, very few studies focus on As removal techniques. Considering this information gap, this study aimed to investigate the performance of an innovative and low-cost treatment system using Fe(III)-oxyhydroxide (FeOOH) coated sand to remove As(III) from aqueous solution. Batch and column experiments were conducted at a laboratory scale in order to study removal kinetics and efficiency. Experimental results indicated that the adsorption isotherm of As(III) on FeOOH coated sand using Langmuir and Freundlich models have high regression factors of 0.987 and 0.991, respectively. The batch adsorption experiment revealed that contact time was approximately 8 h for rough saturation (kinetic test). The concentration of As(III) in effluents at flow rates of 0.6 L/h, 0.9 L/h, and 1.8 L/h ranged from 1.1 µg/L to 1.7 µg/L. Results from this study indicated that FeOOH coated sand columns were effective in removing As(III) from water, with a removal efficiency of 99.1%. Ultimately, FeOOH coated sand filtration could be a potential treatment system to reduce As(III) in the domestic water supply in remote areas of the Vietnamese Mekong Delta.