Redirigiendo al acceso original de articulo en 22 segundos...
Inicio  /  Buildings  /  Vol: 12 Par: 11 (2022)  /  Artículo
ARTÍCULO
TITULO

An Experimental and Numerical Study of the Winter Outdoor Wind Environment in High-Rise Residential Complexes in a Coastal City in Northern China

Zhen Peng    
Yihua Chen    
Wu Deng    
Isaac Yu Fat Lun    
Naibin Jiang    
Gang Lv and Tongyu Zhou    

Resumen

In recent years, residents in high-rise residential complexes (HRCs) in China have been placing an increasing demand on the living quality in HRCs. Particularly, the outdoor wind conditions are garnering more attention; however, few studies on the wind conditions within HRCs with densely arranged buildings and high plot ratios have been reported. Therefore, this study investigated the relation between the buildings? layouts in HRCs and their wind conditions and it proposes optimization strategies to enhance body comfort in their outdoor environments. The research methods in this work involved field surveys, computational fluid dynamics (CFD) simulations, and field monitoring. The field surveys were used to determine the types of activities undertaken by the residents in the selected HRCs and their perceptions of the wind conditions within the HRCs. Field monitoring was primarily conducted to measure the present wind conditions in the HRCs. The CFD simulations were performed to analyze the interactions between individual buildings and the wind as well as the performance of the wind conditions in the HRCs before and after a building layout optimization. The simulation results and monitoring data showed that the present wind conditions in the HRCs were uncomfortable due to high wind speeds (exceeding 5 m/s) and large windless areas. To achieve a comfortable outdoor wind environment, future HRCs should adopt a point-to-point building layout and the buildings should be oriented south. Moreover, the ratios of the height to width (Hb/Wb) for individual buildings should be kept at approximately 1.33. For existing HRCs, landscape walls, trees, and moveable windbreak panels can be used to reduce the wind speeds, especially in open exit/entrance areas and windward areas.

 Artículos similares

       
 
Estefanía Gómez-Gamboa, Jorge Guillermo Díaz-Rodríguez, Jairo Andrés Mantilla-Villalobos, Oscar Rodolfo Bohórquez-Becerra and Manuel del Jesús Martínez    
Revista: Infrastructures

 
Khaqan Baluch, Heon-Joon Park, Kyuchan Ji and Sher Q. Baluch    
Whilst numerical modelling is commonly used for simulation to check the design of water conveyance, sluicing and spillway structure design, the numerical modelling has rarely been compared with the physical model tests. The objective of this research pre... ver más
Revista: Water

 
Bicheng Zhou, Anatoly V. Brouchkov and Jiabo Hu    
Frost heaving in soils is a primary cause of engineering failures in cold regions. Although extensive experimental and numerical research has focused on the deformation caused by frost heaving, there is a notable lack of numerical investigations into the... ver más
Revista: Water

 
Dayana Carolina Chalá, Edgar Quiñones-Bolaños and Mehrab Mehrvar    
Land subsidence is a global challenge that enhances the vulnerability of aquifers where climate change and driving forces are occurring simultaneously. To comprehensively analyze this issue, integrated modeling tools are essential. This study advances th... ver más
Revista: Water

 
Alexander Hergt, Tobias Danninger, Joachim Klinner, Sebastian Grund, Manfred Beversdorff and Christian Werner-Spatz    
In this paper, an experimental and numerical investigation of the effect of leading-edge erosion in transonic blades was performed. The measurements were carried out on a linear blade cascade in the Transonic Cascade Wind Tunnel of DLR in Cologne at two ... ver más