Redirigiendo al acceso original de articulo en 23 segundos...
ARTÍCULO
TITULO

Effect of Operating Parameters on the Coalescence and Breakup of Bubbles in a Multiphase Pump Based on a CFD-PBM Coupled Model

Sijia Tao    
Guangtai Shi    
Yexiang Xiao    
Zongliu Huang and Haigang Wen    

Resumen

When the multiphase pump is running, the internal medium often exists as bubble flow. In order to investigate the bubble occurrence characteristics in the pressurization unit of the multiphase pump more accurately, this paper couples computational fluid dynamics (CFD) with a population balance model (PBM) to investigate the bubble size distribution law of the multiphase pump under different operating conditions, taking into account the bubble coalescence and breakup. The research shows that the mean bubble size in the impeller domain gradually decreases from 1.7013 mm at the inlet to 0.6179 mm at the outlet along the axis direction; the average bubble diameter in the diffuser domain fluctuates around 0.60 mm. The bubbles in the impeller region gradually change from the trend of coalescence to the trend of breakup along the axial and radial directions, and the bubbles in the diffuser tend to be broken by the vortex entrainment. The bubble size development law is influenced by the inlet gas volume fraction (IGVF) and the rotational speed, showing a more obvious rule, where the gas phase aggregation phenomenon enhanced by the increase in IGVF promotes the trend of bubble coalescence and makes the bubble size gradually increase. The increased blade shearing effect with the increase in rotational speed promotes the trend of bubble breakup, which gradually reduces the size of the bubbles. In addition, increasing the bubble coalescence probability is a key factor leading to changes in bubble size; the bubble size development law is not very sensitive to changes in flow, and the bubble size is at its maximum under design conditions. The research results can accurately predict the performance change of the multiphase pump and provide technical guidance for its safe operation and optimal design.

 Artículos similares

       
 
Lidong Zhang, Zhengcong Feng, Yuze Zhao, Xiandong Xu, Jiangzhe Feng, Huaihui Ren, Bo Zhang and Wenxin Tian    
During the expansion of a wind farm, the strategic placement of wind turbines can significantly improve wind energy utilization. This study investigates the evolution of wake turbulence in a wind farm after introducing smaller wind turbines within the ga... ver más

 
Yaneth Vasquez, Jair Franco, Mario Vasquez, Felipe Agudelo, Eleni Petala, Jan Filip, Jose Galvis and Oscar Herrera    
The tannery wastewater from the tanning stage (TWT) comprises organic and Cr pollutants, which can adversely affect aquatic life and have carcinogenic effects. In this study, we investigated the performance of a Fenton-like process using commercial Nano-... ver más
Revista: Water

 
Qiang Liu, Chen Li, Minglei Zhao, Ying Li, Yangyang Yang, Yuxuan Li and Siyuan Ma    
To reduce the operating costs of conventional membrane bioreactors (MBRs) and improve the stability and quality of the dynamic membrane bioreactor (DMBR) effluent, a homemade inexpensive filter cloth assembly was connected to an up-flow ultra-lightweight... ver más
Revista: Water

 
Andreas Neumann and Michaela Brchnelova    
Electric space propulsion is a technology that is used in a continuously increasing number of spacecrafts. The qualification of these propulsion systems has to run in ground-based test facilities which requires long testing times and powerful pumping sys... ver más
Revista: Aerospace

 
Bangchu Zhang, Hao Fu, Weiyu Zhu, Kuijian Yang and Yuanming Xu    
The thermal problem of high-altitude airships has an essential impact on position control and energy system performance. Adjusting the airship?s attitude angle causes differences in thermal performance during position alterations. This paper studies an a... ver más
Revista: Aerospace