Redirigiendo al acceso original de articulo en 15 segundos...
Inicio  /  Buildings  /  Vol: 12 Par: 5 (2022)  /  Artículo
ARTÍCULO
TITULO

Mechanical Characteristics and Acoustic Emission Characteristics of Mortar-Rock Binary Medium

Wenyu Tang    
Hang Lin    
Yifan Chen    
Jingjing Feng and Huihua Hu    

Resumen

The stability of the interface between mortar and rock is very important in engineering construction. In this paper, the all-digital acoustic emission (AE) system is used to detect the direct shear test of the mortar-rock binary medium interface with different sawtooth angles under different normal stress states. The stress-displacement information and AE signal during the whole shearing process are extracted. The coupling relationship between stress and AE characteristic parameters is discussed. The quantitative relationship between sawtooth angle and shear strength of binary medium is established, and three AE characteristic parameters that can be used to predict structural instability are proposed. The research shows that: With the increase of the normal stress and the sawtooth angle, the shear strength of the mortar-rock binary medium increases. The relationship of that is obtained by least squares fitting. The shear stress-displacement curve is divided into five stages according to the change of deformation law. Through the analysis of AE characteristic parameters, it is found that increasing the sawtooth angle makes the AE count and AE cumulative count increase. Based on the analysis of the characteristic parameters of RA-AF, the changes of shear cracks and tensile cracks within the whole shearing process were obtained, respectively. In the process of binary medium shearing, the AE peak frequency is in the range of 120?340 kHz. Three acoustic emission parameters that can predict the macroscopic damage of binary media are obtained: the AE b value, the ratio of shear crack signals, and the number of signals with a peak frequency of 220 Hz to 320 Hz.

 Artículos similares

       
 
Hao Wu, Zhezheng Wu, Weimin Song, Dongwei Chen, Mei Yang and Hang Yuan    
Due to the issue of weakened adhesion between ultra-thin surface overlays, higher demands have been placed on bonding layer materials in practical engineering. This study proposed a method for preparing a one-component waterborne epoxy resin-modified emu... ver más
Revista: Buildings

 
Jianshe Xu, Yazhi Zhu, Jin Wu, Jin Lu, Qian Zhang and Wei Wang    
Although there are currently many types of lattice shell joints with different characteristics, assessing the flexural capacity of lattice shell joints is always a great challenge. In this paper, a fan-shaped assembled joint and a welded joint for compar... ver más
Revista: Buildings

 
Yingwei Liang, Assaad Taoum, Nathan Kotlarewski, Andrew Chan and Damien Holloway    
The mechanical properties of fibre-managed Eucalyptus nitens (E. nitens) cross-laminated timber (CLT) have previously been extensively studied, proving the material to be structurally safe and reliable. However, the vibration performance of CLT manufactu... ver más
Revista: Buildings

 
Xianzheng Yu, Hua Liu, Xiaolin Fan, Liangyu Zhu, Chengqi Zhang and Shiyi Zhang    
In marine environments, bridge piers and columns are prone to corrosion caused by harmful media, particularly chloride ions. This corrosion can lead to cracking of the steel bars in the protective layer of the bridge piers. To enhance the corrosion resis... ver más
Revista: Buildings

 
Fengge Li, Chen Chen and Zehui Xiang    
To investigate the effects of concrete canvas (CC) and carbon fiber reinforced plastic (CFRP) reinforcement on the mechanical properties of corroded reinforced concrete columns (compressive strength, flexure strength, strength of extension, and so on), 4... ver más
Revista: Buildings