Redirigiendo al acceso original de articulo en 16 segundos...
Inicio  /  Applied Sciences  /  Vol: 11 Par: 1 (2021)  /  Artículo
ARTÍCULO
TITULO

A Vehicle Guidance Model with a Close-to-Reality Driver Model and Different Levels of Vehicle Automation

Xiaoyi Ma    
Xiaowei Hu    
Stephan Schweig    
Jenitta Pragalathan and Dieter Schramm    

Resumen

This paper presents a microscopic vehicle guidance model which adapts to different levels of vehicle automation. Independent of the vehicle, the driver model built is different from the common microscopic simulation models that regard the driver and the vehicle as a unit. The term ?Vehicle Guidance Model? covers, here, both the human driver as well as a combination of human driver and driver assistance system up to fully autonomously operated vehicles without a (human) driver. Therefore, the vehicle guidance model can be combined with different kinds of vehicle models. As a result, the combination of different types of driver (human/machine) and different types of vehicle (internal combustion engine/electric) can be simulated. Mainly two parts constitute the vehicle guidance model in this paper: the first part is a traditional microscopic car-following model adjusted according to different degrees of automation level. The adjusted model represents the automation level for the present and the near and the more distant future. The second part is a fuzzy control model that describes how humans adjust the pedal position when they want to reach a target speed with their vehicle. An experiment with 34 subjects was carried out with a driving simulator based on the experimental data and the fuzzy control strategy was determined. Finally, when comparing the simulated model data and actual driving data, it is found that the fuzzy model for the human driver can reproduce the behavior of human participants almost accurately.

 Artículos similares

       
 
Xuerao Wang, Yuncheng Ouyang, Xiao Wang and Qingling Wang    
In this paper, a finite-time, active fault-tolerant control (AFTC) scheme is proposed for a class of autonomous surface vehicles (ASVs) with component faults. The designed AFTC framework is based on an integrated design of fault detection (FD), fault est... ver más

 
Shukuan Zhang, Yunxiang Nan, Yusen Zhang, Chuan Xiang and Mai The Vu    
The propulsion system for underwater vehicles, driven by a counter-rotating permanent magnet synchronous motor (CRPMSM), can enhance the operational stability and efficiency of the vehicle. Due to the influence of complex underwater flows, the load imbal... ver más

 
Javensius Sembiring, Rianto Adhy Sasongko, Eduardo I. Bastian, Bayu Aji Raditya and Rayhan Ekananto Limansubroto    
This paper investigates the development of a deep learning-based flight control model for a tilt-rotor unmanned aerial vehicle, focusing on altitude, speed, and roll hold systems. Training data is gathered from the X-Plane flight simulator, employing a p... ver más
Revista: Aerospace

 
Fangyuan Li, Zhenwei Guo, Peifeng Wu and Yunxuan Cui    
This study proposes two curves that depict the vehicle?bridge contact force in a novel transportation system named AERORail, which is a lightweight cable-supported structure in which the rails and the prestressed cable form the load bearing system. Based... ver más
Revista: Applied Sciences

 
David S. Pellicer and Emilio Larrodé    
This paper shows the development of a numerical analysis model, which enables the calculation of the cargo transport capacity of a vehicle that circulates through a vacuum tube at high speed, whose effectiveness in transport is analyzed. The simulated tr... ver más
Revista: Algorithms