Redirigiendo al acceso original de articulo en 23 segundos...
Inicio  /  Water  /  Vol: 16 Par: 5 (2024)  /  Artículo
ARTÍCULO
TITULO

Rainfall Runoff and Nitrogen Loss Characteristics on the Miyun Reservoir Slope

Na Wang    
Lei Wang    
Liang Jin    
Jiajun Wu    
Min Pang    
Dan Wei    
Yan Li    
Junqiang Wang    
Ting Xu    
Zhixin Yang and Jianzhi Xie    

Resumen

Rainfall intensity and slope gradient are the main drivers of slope surface runoff and nitrogen loss. To explore the distribution of rainfall runoff and nitrogen loss on the Miyun Reservoir slopes, we used artificial indoor simulated rainfall experiments to determine the distribution characteristics and nitrogen migration paths of surface and subsurface runoff under different rainfall intensities and slope gradients. The initial runoff generation time of subsurface runoff lagged that of surface runoff, and the lag time under different rainfall intensity and slope conditions ranges from 3.97 to 12.62 min. Surface runoff rate increased with increasing rainfall intensity and slope gradient; compared with a rainfall intensity of 40 mm/h, at a slope of 15°, average surface runoff rate at 60 and 80 mm/h increased by 2.38 and 3.60 times, respectively. Meanwhile, the subsurface runoff rate trended upwards with increasing rainfall intensity, in the order 5 > 15 > 10°. It initially increased and then decreased with increasing slope gradient, in the order 5 > 10 > 15°. Total nitrogen (TN) loss concentration of surface runoff shows a decrease followed by a stabilization trend; the concentration of TN loss decreases with decreasing rainfall intensity, and the stabilization time becomes earlier and is most obvious in 5° slope conditions. TN loss concentration in subsurface runoff decreased with increasing rainfall intensity, i.e., 40 > 60 > 80 mm/h. The surface runoff rainfall coefficient was mainly affected by rainfall intensity, a correlation between as and slope gradients S was not obvious, and the fitting effect was poor. The subsurface runoff rainfall coefficient was mainly affected by slope gradient, the R2 of all rainfall intensities was <0.60, and the fitting effect was poor. The main runoff loss pathway from the Miyun Reservoir slopes was surface runoff, which was more than 62.57%. At the same time, nitrogen loss was subsurface runoff, more than 51.14%. The proportion of surface runoff to total runoff increases with the increase of rainfall intensity and slope, with a minimum of 62.57%, and the proportion of nitrogen loss from subsurface runoff also decreases with increasing rainfall intensity but does not change with slope gradient. The order of different runoff modulus types was mixed runoff (surface and subsurface runoff occur simultaneously) > surface runoff > subsurface runoff. The surface and mixed runoff modulus increased significantly with increasing rain intensity under different rain intensities and slope gradients. Overall, rainfall intensity significantly affected slope surface runoff, and slope gradient significantly affected nitrogen loss.

 Artículos similares

       
 
Francisca Lanai Ribeiro Torres, Luana Medeiros Marangon Lima, Michelle Simões Reboita, Anderson Rodrigo de Queiroz and José Wanderley Marangon Lima    
Streamflow forecasting plays a crucial role in the operational planning of hydro-dominant power systems, providing valuable insights into future water inflows to reservoirs and hydropower plants. It relies on complex mathematical models, which, despite t... ver más
Revista: Water

 
Lakkana Suwannachai, Krit Sriworamas, Ounla Sivanpheng and Anongrit Kangrang    
In addition to changes in the amount of rain, changes in land use upstream are considered a factor that directly affects the maximum runoff flow in a basin, especially in areas that have experienced floods and flash floods. This research article presents... ver más
Revista: Water

 
Idi Souley Tangam, Roland Yonaba, Dial Niang, Mahaman Moustapha Adamou, Amadou Keïta and Harouna Karambiri    
This study focuses on the Sirba River Basin (SRB), a transboundary West African catchment of 38,950 km2 shared by Burkina Faso and Niger, which contributes to flooding downstream in Niamey (Niger). The study uses the HEC-HMS hydrological model to explore... ver más
Revista: Hydrology

 
Yongwei Gong, Ge Meng, Kun Tian and Zhuolun Li    
A proposed method for analyzing the effectiveness of rainwater storage tanks (RWSTs) based on various enabling rule scenarios has been proposed to address the issue of incomplete strategies and measures for controlling excessive rainwater runoff. Three e... ver más
Revista: Water

 
Cuong Ngoc Nguyen, Hing-Wah Chau and Nitin Muttil    
Green roofs (GRs) have been researched for decades, yet their implementation remains constrained due to several reasons, including their limited appeal to policymakers and the public. Biochar, a carbon-rich material, has been recently introduced as an am... ver más
Revista: Water