Redirigiendo al acceso original de articulo en 22 segundos...
Inicio  /  Water  /  Vol: 7 Par: 11 (2015)  /  Artículo
ARTÍCULO
TITULO

Spatial Modeling of Rainfall Patterns over the Ebro River Basin Using Multifractality and Non-Parametric Statistical Techniques

José L. Valencia    
Ana M. Tarquis    
Antonio Saa    
María Villeta and José M. Gascó    

Resumen

Rainfall, one of the most important climate variables, is commonly studied due to its great heterogeneity, which occasionally causes negative economic, social, and environmental consequences. Modeling the spatial distributions of rainfall patterns over watersheds has become a major challenge for water resources management. Multifractal analysis can be used to reproduce the scale invariance and intermittency of rainfall processes. To identify which factors are the most influential on the variability of multifractal parameters and, consequently, on the spatial distribution of rainfall patterns for different time scales in this study, universal multifractal (UM) analysis?C1, a, and ?s UM parameters?was combined with non-parametric statistical techniques that allow spatial-temporal comparisons of distributions by gradients. The proposed combined approach was applied to a daily rainfall dataset of 132 time-series from 1931 to 2009, homogeneously spatially-distributed across a 25 km × 25 km grid covering the Ebro River Basin. A homogeneous increase in C1 over the watershed and a decrease in a mainly in the western regions, were detected, suggesting an increase in the frequency of dry periods at different scales and an increase in the occurrence of rainfall process variability over the last decades.

 Artículos similares

       
 
Yunzhou Chen, Shumin Wang, Ziying Gu and Fan Yang    
Spatial population distribution data is the discretization of demographic data into spatial grids, which has vital reference significance for disaster emergency response, disaster assessment, emergency rescue resource allocation, and post-disaster recons... ver más
Revista: Applied Sciences

 
Lilai Jin, Sarah J. Higgins, James A. Thompson, Michael P. Strager, Sean E. Collins and Jason A. Hubbart    
Saturated hydraulic conductivity (Ksat) is a hydrologic flux parameter commonly used to determine water movement through the saturated soil zone. Understanding the influences of land-use-specific Ksat on the model estimation error of water balance compon... ver más
Revista: Water

 
Zeyu Xu, Wenbin Yu, Chengjun Zhang and Yadang Chen    
In the era of noisy intermediate-scale quantum (NISQ) computing, the synergistic collaboration between quantum and classical computing models has emerged as a promising solution for tackling complex computational challenges. Long short-term memory (LSTM)... ver más
Revista: Information

 
Guoliang Sun, Tingting Guo, Bao Yuan, Xiaojing Yang and Guang Wang    
The sample environment is essential to neutron scattering experiments as it induces the sample under study into a phase or state of particular interest. Various sample environments have been developed, yet the high-voltage electric field has rarely been ... ver más
Revista: Instruments

 
Chinh Lieou, Serge Jolicoeur, Thomas Guyondet, Stéphane O?Carroll and Tri Nguyen-Quang    
This study examines the hydrodynamic regimes in Shediac Bay, located in New Brunswick, Canada, with a focus on the breach in the Grande-Digue sand spit. The breach, which was developed in the mid-1980s, has raised concerns about its potential impacts on ... ver más