Redirigiendo al acceso original de articulo en 21 segundos...
Inicio  /  Geosciences  /  Vol: 12 Par: 3 (2022)  /  Artículo
ARTÍCULO
TITULO

Commentary and Review of Modern Environmental Problems Linked to Historic Flow Capacity in Arid Groundwater Basins

Barry J. Hibbs    

Resumen

Environmental problems may develop in groundwater basins when water levels change due to long-term wetter or drier climate or land development. A term related to water-level elevation is flow capacity, which develops in aquifers when the water table is at or very close to land surface. Non-capacity develops in systems where the water table is too deep for capillary water to reach the land surface. Flow capacity is the maximum amount of water that an aquifer can transmit. Sufficient moisture is not available for flow capacity to be established in most aquifers in arid zones and these aquifers are at non-capacity, but many aquifers in today?s deserts were at flow capacity when paleoclimates were cooler and moister during the late Pleistocene. Climate change and anthropogenic activities can cause aquifers to move toward flow capacity but in the last 15,000 years, almost always toward non-capacity. This paper reviews environmental and geotechnical problems associated with the transition of groundwater basins from flow capacity to non-capacity, and vice versa. Five relevant topics are discussed and evaluated: (1) The effects of flow capacity and non-capacity on groundwater basins targeted for waste repositories; (2) The salt contamination of groundwater where flow capacity was present in the Late Pleistocene and is no longer present; (3) Trace element enrichment in salt crusts in playa sediments and environmental risks to groundwater when the flow systems transition from flow capacity to non-capacity; (4) The development and retention of environmental tracers in arid groundwater flow systems at flow capacity that cannot be explained under conditions of non-capacity; and (5) The relationship of flow capacity to fossil hydraulic gradients and non-equilibrium conditions where there is little groundwater extraction. A case example is provided with each of these topics to demonstrate relevance and to provide an understanding of topics as they relate to land management.

 Artículos similares

       
 
Félix Mateos-Redondo, Timea Kovács and Edgar Berrezueta    
The aim of this article is to provide a qualitative and quantitative description of Lower–Upper Cretaceous detrital rocks (Escucha and Utrillas sandstones) in order to explore their potential use as CO2 reservoirs based on their petrographic and pe... ver más
Revista: Geosciences

 
Reinier Van Noort, Pål Tore Mørkved and Siv Hjorth Dundas    
The acidification of agricultural soils in high rainfall regions is usually countered by the application of finely ground calcite or dolomite. As this carbonate dissolves, soil pH is raised, but CO2 is released. Mining activities often produce large quan... ver más
Revista: Geosciences

 
Yann Le Gallo and José Carlos De Dios    
Investigation into geological storage of CO2 is underway at Hontomín (Spain). The storage reservoir is a deep saline aquifer formed by naturally fractured carbonates with low matrix permeability. Understanding the processes that are involved in CO... ver más
Revista: Geosciences