Redirigiendo al acceso original de articulo en 15 segundos...
Inicio  /  Water  /  Vol: 15 Par: 9 (2023)  /  Artículo
ARTÍCULO
TITULO

The Impact of Sediment?Water Ratio and Hydraulic Residence Time on the Release of Inorganic Nitrogen from Sediments in the Pearl River Delta

Zerui Gong    
Yanling Wang    
Heping Hu    
Pengfei Chen    
Yao Lu    
Lei Wang and Shaobin Huang    

Resumen

Black-odorous water bodies in the Pearl River Delta have been treated. However, the re-release of nitrogen (N)-containing compounds in sediment can cause a relapse of black-odorous water bodies. Sediment?water ratio (SWR) and hydraulic residence time (HRT) influence pollutant release. Therefore, how to control SWR and HRT during the treatment process has become an urgent problem. This study focuses on the dynamic release of endogenous inorganic N from sediments into overlying water in a river channel of Dongguan City, Guangdong Province. Physicochemical parameters (dissolved inorganic nitrogen (DIN), NH4+-N, NO3--N, NO2--N, dissolved oxygen (DO), pH, oxidation-reduction potential (ORP), chemical oxygen demand (COD), Fe and total phosphorus (TP)) of overlying water were monitored under different SWRs (0.71, 0.38, and 0.16) and HRTs (13 days and 6.5 days), and the nitrogen release flux under different conditions was compared. Finally, the correlation and influence pathways among environmental factors were analyzed. The results showed that SWR significantly affected DO, pH, ORP, and sediment N release fluxes while prolonging HRT-promoted denitrification. DIN ? NO2--N ? DO pathway had a total effect of 19.6%, and DIN may promote low DO concentration via NO2- oxidation. Maintaining reasonable SWR and HRT can reduce the release of inorganic N from sediment into the overlying water. This study provides a theoretical basis for controlling black-odorous water bodies.

 Artículos similares

       
 
Jian Yang, Ming Sun, Guohuang Yao, Haizhu Guo and Rumian Zhong    
This study explores an advanced prefabricated composite structure, namely ECC/RC composite shear walls with enhanced seismic performance. This performance enhancement is attributed to the strategic use of engineered cementitious composites (ECC) known fo... ver más
Revista: Buildings

 
Alexander Lange, Ronghua Xu, Max Kaeding, Steffen Marx and Joern Ostermann    
Regular inspections of important civil infrastructures are mandatory to ensure structural safety and reliability. Until today, these inspections are primarily conducted manually, which has several deficiencies. In context of prestressed concrete structur... ver más
Revista: Acoustics

 
Kedong Zhang, Wenhua Wang, Yihua Liu, Linlin Wang, Yazhen Du, Hongxia Li and Yi Huang    
A new type of anti-rolling device denoted as a fluid momentum wheel (FMW) is proposed to address the limitations of traditional gyrostabilizers in reducing the roll responses of floating platforms in waves. The proposed device is based on the same gyrosc... ver más

 
Dongfeng Yan, Zehang Zhao, Anchen Song, Fengming Li, Lu Ye, Ganchao Zhao and Shan Ma    
The fluidic pintle nozzle, a new method to control the thrust of a solid rocket motor, has been proposed in recent years by combining the pintle with the aerodynamic throat (fluidic throat). The study of static characteristics has proved that it has a re... ver más
Revista: Aerospace

 
Jungho Lee, Ingyu Lee, Seongphil Woo, Yeoungmin Han and Youngbin Yoon    
The spray and combustion characteristics of a gas-centered swirl coaxial (GCSC) injector used in oxidizer-rich staged combustion cycle engines were analyzed. The study focused on varying the recess ratio, presence of gas swirl, and swirl direction to imp... ver más
Revista: Aerospace