Redirigiendo al acceso original de articulo en 17 segundos...
Inicio  /  Buildings  /  Vol: 13 Par: 9 (2023)  /  Artículo
ARTÍCULO
TITULO

Variability Analysis of the Hysteretic Behavior of Fiber-Reinforced Polymer (FRP)-Confined Concrete Columns Based on a Secondary Development Model

Yuanfeng Wang    
Lei Pan    
Weitao Niu    
Kai Li and Kun Guo    

Resumen

A reasonable material hysteretic constitutive model has a significant influence on the seismic simulation results of structures. To better describe the hysteresis seismic performance of fiber-reinforced polymer (FRP)-constrained concrete, a new modified hysteresis constitutive model is proposed based on the existing model and with sufficient consideration of the drop section of the skeleton curve. The validity of the proposed model is verified by comparing with quasi-static experimental data of FRP-confined reinforced concrete (FRP-C RC) columns in the literature. Subsequently, the compressive strength of concrete is selected as a major variable, and a quasi-Monte Carlo method is utilized to generate random samples, which are substituted into the proposed modified model and some comparison models. Finally, the hysteretic behavior of FRP-C RC columns is analyzed from the perspective of the material strength variability. The results demonstrate that (1) The proposed hysteretic constitutive model is able to provide rational predictions of the hysteretic behavior of FRP-C RC columns, and the mean relative error of each specimen is less than 6%. It can be applied to carbon FRPs (CFRPs) and glass FRPs (GFRPs), as well as different cross-sectional forms such as cylindrical and square columns. (2) A large number of hysteretic behavior cases of FRP-C RC columns can be successfully analyzed from the perspective of concrete material variability combined with finite element software. The average and variation coefficient of the maximum horizontal force of FRP-C reinforced C30 concrete columns are 76.77 kN and 0.0488, respectively, while the average and variation coefficient of the maximum horizontal force of FRP-C reinforced C50 concrete columns are 91.14 kN and 0.0454, respectively. (3) The average value and variation coefficient of the maximum horizontal force and equivalent damping ratio of FRP-C RC columns are affected by the compressive strength, axial compression ratio and reinforcement ratio, which show a certain regularity.

 Artículos similares

       
 
Z. Jason Hou, Nicholas D. Ward, Allison N. Myers-Pigg, Xinming Lin, Scott R. Waichler, Cora Wiese Moore, Matthew J. Norwood, Peter Regier and Steven B. Yabusaki    
The influence of coastal ecosystems on global greenhouse gas (GHG) budgets and their response to increasing inundation and salinization remains poorly constrained. In this study, we have integrated an uncertainty quantification (UQ) and ensemble machine ... ver más
Revista: Water

 
Chen Zhang, Celimuge Wu, Min Lin, Yangfei Lin and William Liu    
In the advanced 5G and beyond networks, multi-access edge computing (MEC) is increasingly recognized as a promising technology, offering the dual advantages of reducing energy utilization in cloud data centers while catering to the demands for reliabilit... ver más
Revista: Future Internet

 
Sylvain Rodat and Richard Thonig    
Solar energy is not only the most abundant energy on earth but it is also renewable. The use of this energy is expanding very rapidly mainly through photovoltaic technology. However, electricity storage remains a bottleneck in tackling solar resource var... ver más

 
Christos Tzimopoulos, Kyriakos Papadopoulos, Nikiforos Samarinas, Basil Papadopoulos and Christos Evangelides    
In this work, a novel fuzzy FEM (Finite Elements Method) numerical solution describing the recession flow in unconfined aquifers is proposed. In general, recession flow and drainage problems can be described by the nonlinear Boussinesq equation, while th... ver más
Revista: Hydrology

 
Kevin S. Sambieni, Fabien C. C. Hountondji, Luc O. Sintondji, Nicola Fohrer, Séverin Biaou and Coffi Leonce Geoffroy Sossa    
Climate and land cover changes are key factors in river basins? management. This study investigates on the one hand 60-year (1960 to 2019) rainfall and temperature variability using station data combined with gridded data, and on the other hand land cove... ver más
Revista: Hydrology