Redirigiendo al acceso original de articulo en 22 segundos...
Inicio  /  Applied Sciences  /  Vol: 13 Par: 22 (2023)  /  Artículo
ARTÍCULO
TITULO

Numerical Simulation and Analysis of the Acoustic Properties of Bimodal and Modulated Macroporous Structures

Abdulrazak Jinadu Otaru    
Olalekan David Adeniyi    
Ige Bori    
Olufemi Ayodeji Olugboji and Joseph Obofoni Odigure    

Resumen

In recent decades, cellular metallic materials have increasingly been used for control of reverberation and cutback. These materials offer a unique combination of expanded pores, high specific surfaces, improved structural performance, low weight, corrosion resistance at high temperatures, and a fixed/rigid pore network (i.e., at the boundaries, porosity does not change). This study examines the ability of sphere-packing models combined with numerical modelling and simulations to predict the acoustic properties of bimodal and modulated bottleneck-shaped macroporous structures that can realistically be achieved through liquid melts infiltration casting technique. The simulations show that porosity, openings, pore sizes and permeability of the material have significant effects on acoustics, and the predictions are consistent with experimental data substantiated in the literature. The modelling suggests that the creation of bimodal structures increases the capacity of the interstitial pores and pore contacts. The result is improved sound absorption properties and spectra, characterised by a pore volume fraction of 0.73 and a mean pore size to mean pore opening ratio of 4.8 for the 50% volume bimodal structure created at a 10 µm capillary radius. The importance of how pore structure-related parameters and existing fluid flow regimes can modulate the sound absorption performance of macroporous structures was revealed by numerical simulations of the sound absorption spectra for dual-porosity and dilated macroporous structures working from high-resolution tomography datasets. Sound absorption properties were optimised for structures having pore volume fractions between 0.68 and 0.76, maintaining the mean pore size to mean pore opening ratios between 4.0 and 6.0. Using this approach, enhanced and self-supporting macroporous structures may be designed and fabricated for efficient sound absorption in specific applications.

 Artículos similares

       
 
Shengtao Chen, Yuhan Zhang, Tianyu Su and Yongjun Gong    
The initial running speed of the pig during gas?liquid two-phase pipeline pigging can significantly influence the velocities of both gas and liquid phases within the pipeline. However, due to the complexity and limited understanding of these velocity var... ver más

 
Tao Wang, Yu Xiang, Liyuan Liu and Wang Xiong    
Relying on the Mawan undersea large-diameter, dual-line, mud?water-balanced shield tunnel project and focusing on the characteristics of the tunnel, such as the complex geological conditions at the expected intersection location and the existence of a su... ver más

 
Liyuan Wang, Pengfei Zhou, Jiayang Gu and Yapeng Li    
This study focuses on a large-scale cruise ship as the subject of research, with a particular emphasis on conditions not covered in the MSC.1/Circ.1533 guidelines. The investigation explores the impact of specific motion states of the cruise ship, includ... ver más

 
Jiaxin Zhang, Kan Hong, Yeping Yuan, Ying-Tien Lin and Dongrui Han    
A three-dimensional numerical model was established with OpenFOAM-5.x to investigate plume characteristics under windless and rainless weather conditions. The large eddy simulation was applied, combined with a modified solver for solving governing equati... ver más

 
Shizhen Gao, Zhihua Fan, Jie Mao, Minhui Zheng and Junyi Yang    
It is important to marine ecology research that plankton samples are collected without damage, especially for time series samples. Usually, most fixed-point plankton samplers are made using a pump with paddle blades in order to increase the flow rate. Bu... ver más