Redirigiendo al acceso original de articulo en 18 segundos...
Inicio  /  Agriculture  /  Vol: 13 Par: 11 (2023)  /  Artículo
ARTÍCULO
TITULO

Diversity and Traits of Multiple Biotic Stressors Elicit Differential Defense Responses in Legumes

Saumik Basu    
Natalia Moroz    
Benjamin W. Lee    
Kiwamu Tanaka    
Liesl Oeller    
Chase W. Baerlocher and David W. Crowder    

Resumen

In agroecosystems, plants frequently confront multiple biotic stressors, including herbivores and pathogens. The nature of these interactions plays a crucial role in mediating the activation of plant defense mechanisms. However, induction of plant chemical defenses has been more well studied than the induction of physical defenses. Here, we assessed the physical and chemical defense responses of pea (Pisum sativum) plants after exposure to three stressors: a vector herbivore (pea aphid, Acrythosiphon pisum), a non-vector herbivore (pea leaf weevil, Sitona lineatus), and a virus (Pea enation mosaic virus, PEMV). We used various histochemical staining techniques show that viruliferous A. pisum (transmitting PEMV) strongly induced callose deposition (aniline blue staining) and antioxidant-mediated defenses (DAB and NBT staining) in peas, primarily through accumulating reactive oxygen species (ROS). High-throughput phenotyping showed that viruliferous aphids reduced plant photosynthetic efficiency, but plants infected with PEMV had increased cell death (trypan blue staining). However, herbivory by aphids and weevils did not strongly induce defenses in peas, even though weevil feeding significantly reduced pea leaf area. These results show that not all herbivores induce strong defensive responses, and plant responses to vector species depends on their virus infection status. More broadly, our results indicate that variable stressors differentially regulate various plant responses through intricate chemical and physical defense pathways.

 Artículos similares