Redirigiendo al acceso original de articulo en 21 segundos...
Inicio  /  Applied Sciences  /  Vol: 12 Par: 12 (2022)  /  Artículo
ARTÍCULO
TITULO

Natural Time Series Parameters Forecasting: Validation of the Pattern-Sequence-Based Forecasting (PSF) Algorithm; A New Python Package

Mayur Kishor Shende    
Sinan Q. Salih    
Neeraj Dhanraj Bokde    
Miklas Scholz    
Atheer Y. Oudah and Zaher Mundher Yaseen    

Resumen

Climate change has contributed substantially to the weather and land characteristic phenomena. Accurate time series forecasting for climate and land parameters is highly essential in the modern era for climatologists. This paper provides a brief introduction to the algorithm and its implementation in Python. The pattern-sequence-based forecasting (PSF) algorithm aims to forecast future values of a univariate time series. The algorithm is divided into two major processes: the clustering of data and prediction. The clustering part includes the selection of an optimum value for the number of clusters and labeling the time series data. The prediction part consists of the selection of a window size and the prediction of future values with reference to past patterns. The package aims to ease the use and implementation of PSF for python users. It provides results similar to the PSF package available in R. Finally, the results of the proposed Python package are compared with results of the PSF and ARIMA methods in R. One of the issues with PSF is that the performance of forecasting result degrades if the time series has positive or negative trends. To overcome this problem difference pattern-sequence-based forecasting (DPSF) was proposed. The Python package also implements the DPSF method. In this method, the time series data are first differenced. Then, the PSF algorithm is applied to this differenced time series. Finally, the original and predicted values are restored by applying the reverse method of the differencing process. The proposed methodology is tested on several complex climate and land processes and its potential is evidenced.

Palabras claves

 Artículos similares

       
 
Jiarun Tang and Dongxia Chen    
Granite residual soil (GRS) exhibits favorable engineering properties in its natural state. However, a hot and rainy climate, combined with vibrations generated during mechanical construction, can cause a notable decrease in its strength. In this study, ... ver más
Revista: Applied Sciences

 
Jun Yeong Kim, Chang Geun Song, Jung Lee, Jong-Hyun Kim, Jong Wan Lee and Sun-Jeong Kim    
In this paper, we propose a learning model for tracking the isolines of fluid based on the physical properties of particles in particle-based fluid simulations. Our method involves analyzing which weights, closely related to surface tracking among the va... ver más
Revista: Applied Sciences

 
Aliyye Kara, Ibrahim Eksin and Ata Mugan    
The design optimization of structures can be conducted in either the time domain or the frequency domain. The frequency domain approach is advantageous compared to its time domain counterpart, especially if the degree of freedom is large, the objectives ... ver más
Revista: Applied Sciences

 
Yizhou Zhuang, Xiaoyao Hu, Wenbin He, Danyi Shen and Yijun Zhu    
Landslides not only cause great economic and human life losses but also seriously affect the safe operation of infrastructure such as highways. Rainfall is an important condition for inducing landslides, especially when a fault and weak interlayer exist ... ver más
Revista: Water

 
George Kampas, Andreas Panagopoulos, Ioannis Gkiougkis, Christos Pouliaris, Fotios-Konstantinos Pliakas, Vasiliki Kinigopoulou and Ioannis Diamantis    
The Nestos River delta is one of the most important and sensitive basins in Greece and Europe due to its ecosystem functions, combining intensive agricultural production with low-enthalpy geothermal energy and important ecotopes. High water quality is of... ver más
Revista: Water