Redirigiendo al acceso original de articulo en 24 segundos...
ARTÍCULO
TITULO

Design of the Depth Controller for a Floating Ocean Seismograph

Haocai Huang    
Chenyun Zhang    
Weiwei Ding    
Xinke Zhu    
Guiqing Sun and Hangzhou Wang    

Resumen

Floating ocean seismograph (FOS) is a vertical underwater vehicle used to detect ocean earthquakes by observing P waves at teleseismic distances in the oceans. With the requirements of rising to the surface and transmitting data to the satellite in real time and diving to the desired depth and recording signals, the depth control of FOS needs to be zero overshoot and accurate with fast response. So far, it remains challenging to implement such depth control due to the variation of buoyancy caused by the seawater density varying with the depth. The deeper the water is, the greater the impacts on buoyancy are. To tackle it, a fuzzy sliding mode controller considering the influence of seawater density change is proposed and simulated in MATLAB/SIMULINK based on the variable buoyancy system and state space function of FOS. Compared with proportional-integral-derivative (PID) controller, fuzzy PID controller and sliding mode controller, the simulation results indicate that the proposed controller shows its superiority regardless of the disturbing force. Its advantages include smaller steady-state error, faster response time, smaller system chatter, and well robustness. This proves that the designed fuzzy sliding mode controller is able to meet the working requirements and thus, lays a foundation for FOS application.

 Artículos similares

       
 
Fangyou Yu, Zhanbiao Gao, Qifan Zhang, Lianjie Yue and Hao Chen    
Suppressing shock-induced flow separation has been a long-standing problem in the design of supersonic vehicles. To reduce the structural and design complexity of control devices, a passive control technique based on micro-serrations is proposed and its ... ver más
Revista: Aerospace

 
Xinlei Duan, Jianlong Chang, Guangsong Chen, Taisu Liu and He Ma    
The use of film cooling technology is one of the most effective ways to minimize the damage to wall materials caused by the high-temperature environment in a ramjet. Optimization of the design to achieve the highest film cooling efficiency on the hot wal... ver más
Revista: Aerospace

 
Mehdi Hajinezhadian and Behrouz Behnam    
Offshore platforms are important infrastructures that often face severe environmental conditions, such as corrosion, throughout their lifetime. This can continuously decrease their structural robustness. Despite the availability of many anti-corrosion st... ver más

 
Zhitao Guo, Xudong Zhao, Qingfen Ma, Jingru Li and Zhongye Wu    
As a key component connecting a floating wind turbine with static sea cables, dynamic cables undergo significant tensile and bending loads caused by hydrostatic pressure, self-weight, waves, and ocean currents during service, which can lead to fatigue fa... ver más

 
Eyad K. Sayhood, Nisreen S. Mohammed, Salam J. Hilo and Salih S. Salih    
This paper presents comprehensive empirical equations to predict the shear strength capacity of reinforced concrete deep beams, with a focus on improving the accuracy of existing codes. Analyzing 198 deep beams imported from 15 existing investigations, t... ver más
Revista: Infrastructures