Redirigiendo al acceso original de articulo en 18 segundos...
Inicio  /  Applied Sciences  /  Vol: 13 Par: 15 (2023)  /  Artículo
ARTÍCULO
TITULO

Study of Dynamic Inductance Gradient of Augmented Electromagnetic Rail Launcher Considering High-Speed Motion of Armature

Rongge Yan    
Kang An    
Qingxin Yang and Jinbo Jiang    

Resumen

The rail inductance gradient is an important parameter of the electromagnetic launcher. The calculation of its value is important for the design of the launcher structure and for predicting the motion behavior of the armature. The current research on the inductance gradient analysis method of the electromagnetic rail launcher mostly does not take into account the effects of launcher size and current diffusion. This method cannot describe its dynamic characteristics, and it results in a large error compared with the actual launch. Therefore, the paper first establishes an electromagnetic rail launcher armature motion model to obtain the rail velocity skin depth under a U-shaped armature. Second, an analytical method for calculating the inductance gradient based on the dynamic skin depth of the rail is obtained, which takes into account the launcher size and velocity skin effect. Finally, the experimental results verify the correctness and accuracy of the method to achieve an accurate prediction of armature speed.

 Artículos similares

       
 
Zhitao Guo, Xudong Zhao, Qingfen Ma, Jingru Li and Zhongye Wu    
As a key component connecting a floating wind turbine with static sea cables, dynamic cables undergo significant tensile and bending loads caused by hydrostatic pressure, self-weight, waves, and ocean currents during service, which can lead to fatigue fa... ver más

 
Ying Li, Liu Du and Yung-Ho Chiu    
Water scarcity is increasingly being recognized as a global concern. Sustainable Development Goal 6 (SDG-6) was established by the United Nations to address water resource governance within its sustainable development framework. This study employs the en... ver más
Revista: Water

 
Kees Nederhoff, Sean C. Crosby, Nate R. Van Arendonk, Eric E. Grossman, Babak Tehranirad, Tim Leijnse, Wouter Klessens and Patrick L. Barnard    
The Puget Sound Coastal Storm Modeling System (PS-CoSMoS) is a tool designed to dynamically downscale future climate scenarios (i.e., projected changes in wind and pressure fields and temperature) to compute regional water levels, waves, and compound flo... ver más
Revista: Water

 
Yadong Zhu, Haifeng Jiao, Shihui Wang, Wenbo Zhu, Mengcheng Wang and Songshan Chen    
In order to study the pressure pulsation characteristics and structural dynamic response characteristics of a vertical shaft cross-flow pump, this study used a computational fluid dynamics (CFD) numerical simulation method to analyze the pressure pulsati... ver más
Revista: Water

 
Jacopo Beretta, Andres Cardozo, Nicola Paletta, Antonio Chiariello and Marika Belardo    
The T-WING project, a CS2-CPW (Clean Sky 2 call for core partner waves) research initiative within FRC IADP (Fast Rotor-Craft Innovative Aircraft Demonstrator Platform), focuses on developing, qualifying and testing the new wing of the Next-Generation Ci... ver más
Revista: Aerospace