Redirigiendo al acceso original de articulo en 19 segundos...
Inicio  /  Hydrology  /  Vol: 10 Par: 9 (2023)  /  Artículo
ARTÍCULO
TITULO

Simulating Phosphorus Load Reductions in a Nested Catchment Using a Flow Pathway-Based Modeling Approach

Russell Adams and Paul Quinn    

Resumen

Catchment models are essential tools to identify and predict water quality problems linked to excessive nutrient applications (in this case phosphorus (P)). The Catchment Runoff Attenuation Flux Tool (CRAFT) has been successfully used to model nutrient fluxes and concentrations in north-western European catchments. The model is extremely parsimonious due to the relatively small number of parameters. However, an improvement to the representation of soluble P and particulate P fluxes in the fast-subsurface and surface runoff flow pathways was required. A case study in the north of Ireland applied the original and the new, enhanced (Dynamic) version of the CRAFT to the trans-border Blackwater catchment (UK and Republic of Ireland) covering nearly 1500 km2, with the land use predominantly livestock grazing. The larger size of the Blackwater also required a nested modeling approach to be implemented using a multiple sub-catchment variant (MultiCRAFT). P load reductions in the different sub-catchments were first identified using a simple approach based on the gap between the Water Framework Directive (WFD) limits for ?Good? ecological status for soluble reactive P (SRP) concentrations and the recently observed concentrations. Modeling of different mitigation scenarios was then conducted using the MultiCRAFT framework with the best-performing variant of the CRAFT model embedded. The catchment was found to have flashy, episodic delivery of high concentrations of SRP and PP during runoff events which will require different sources (i.e., diffuse and point) of P to be targeted to achieve the WFD targets by the end of the decade. The modeling results thus showed that the required SRP load reductions could be best achieved using a combined scenario of mitigation measures that targeted diffuse sources contributing to both the surface runoff and fast-subsurface flow pathways, with point sources also identified as needing reduction in some sub-catchments.

 Artículos similares

       
 
Gorazd Novak, Angelantonio Tafuni, José M. Domínguez, Matja? Cetina and Du?an ?agar    
Fishways have a great ecological importance as they help mitigate the interruptions of fish migration routes. In the present work, the novel DualSPHysics v4.4 solver, based on the smoothed particle hydrodynamics method (SPH), has been applied to perform ... ver más
Revista: Water

 
Margarita Garcia-Vila, Rodrigo Morillo-Velarde and Elias Fereres    
Process-based crop models such as AquaCrop are useful for a variety of applications but must be accurately calibrated and validated. Sugar beet is an important crop that is grown in regions under water scarcity. The discrepancies and uncertainty in past ... ver más
Revista: Water

 
Nejc Co?, Reza Ahmadian and Roger A. Falconer    
Understanding the impact of various hydraulic structures, such as coastal reservoirs and tidal range impoundments, has been one of the key challenges of hydro?environmental engineering in recent years. Over the last half-century, several proposals for ti... ver más
Revista: Water

 
Francesco Fusco, Pantaleone De Vita, Benjamin B. Mirus, Rex L. Baum, Vincenzo Allocca, Rita Tufano, Enrico Di Clemente and Domenico Calcaterra    
On the 4th and 5th of March 2005, about 100 rainfall-induced landslides occurred along volcanic slopes of Camaldoli Hill in Naples, Italy. These started as soil slips in the upper substratum of incoherent and welded volcaniclastic deposits, then evolved ... ver más
Revista: Water

 
Yaru Guo, Tian-Chyi Jim Yeh and Yonghong Hao    
Karst aquifers are prominent sources of water worldwide; they store large amounts of water and are known for their beautiful springs. However, extensive groundwater development and climate variation has resulted in a decline in the flow of most karst spr... ver más
Revista: Water