Next Article in Journal
Restoration of Missing Patterns on Satellite Infrared Sea Surface Temperature Images Due to Cloud Coverage Using Deep Generative Inpainting Network
Next Article in Special Issue
The Case of Lionfish (Pterois miles) in the Mediterranean Sea Demonstrates Limitations in EU Legislation to Address Marine Biological Invasions
Previous Article in Journal
Physical Modelling of the Effect on the Wave Field of the WaveCat Wave Energy Converter
Previous Article in Special Issue
Transition in Population Dynamics of the Intertidal Barnacle Balanus glandula after Invasion: Causes and Consequences of Change in Larval Supply
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Interesting Images

Protect the Natives to Combat the Aliens: Could Octopus vulgaris Cuvier, 1797 Be a Natural Agent for the Control of the Lionfish Invasion in the Mediterranean Sea?

by
Fabio Crocetta
1,*,
Maria Shokouros-Oskarsson
2,
Nikolaos Doumpas
3,
Ioannis Giovos
3,
Stefanos Kalogirou
4,
Joachim Langeneck
5,
Valentina Tanduo
1,
Francesco Tiralongo
6,7,
Riccardo Virgili
1 and
Periklis Kleitou
8,9
1
Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
2
Independent Researcher, Agiou Mama 91, 5295 Paralimni, Cyprus
3
iSea, Environmental Organization for the Preservation of the Aquatic Ecosystems, Agios Paulos, 55438 Thessaloniki, Greece
4
Hellenic Centre for Marine Research, Hydrobiological Station of Rhodes, 85100 Rhodes, Greece
5
Department of Biology, University of Pisa, 56126 Pisa, Italy
6
Ente Fauna Marina Mediterranea, Scientific Organization for Research and Conservation of Marine Biodiversity, 96012 Avola, Italy
7
Department of Biological, Geological and Environmental Sciences, University of Catania, 95129 Catania, Italy
8
School of Biological and Marine Sciences, University of Plymouth, Devon, Plymouth PL4 8AA, UK
9
Marine and Environmental Research (MER) Lab, 4533 Limassol, Cyprus
*
Author to whom correspondence should be addressed.
J. Mar. Sci. Eng. 2021, 9(3), 308; https://doi.org/10.3390/jmse9030308
Submission received: 14 February 2021 / Revised: 5 March 2021 / Accepted: 9 March 2021 / Published: 11 March 2021
(This article belongs to the Special Issue Marine Bio-Invasions)
Biological invasions constitute a major threat to native ecosystems and to global biodiversity [1,2]. The Mediterranean Sea, a biodiversity hotspot hosting about 17,000 species, is facing an unprecedented challenge due to the invasion of nonindigenous species (NIS) and is considered to be the most bioinvaded marine region in the world [3,4]. Although the number of recorded NIS has reached about 1000 so far, only a fraction of those have been documented to cause adverse impacts to the environment, pose a threat to human health and/or result in economic losses and increased management efforts [5,6,7,8].
Among NIS, the lionfish Pterois miles (Bennett, 1828) raised the concern of the regional scientific community of the Mediterranean Sea because of its rapid invasion and population expansion during the last decade [9,10]. The lionfish is native to the Indian Ocean and abundant in the Red Sea, with a geographical distribution that extends southwards to the eastern parts of South Africa, the Arabian Sea, the Persian Gulf, the Gulf of Oman, the Laccadive Sea, the Bay of Bengal, the Andaman Sea and the Indonesian region [11]. This taxon, together with other congeneric species, is involved in an ongoing invasion in the western Atlantic, where it is causing significant ecological and socioeconomic impacts [12,13,14]. The lionfish was reported for the first time in the Mediterranean Sea off Israel in 1991 [15], and following a twenty-year gap in observations it was sighted off nearby Lebanon in 2012 [16]. Then, within two years, a plethora of records followed from the entire Levantine Sea [17,18,19,20,21]. Its population expansion and establishment in the Mediterranean Sea were finally evident in several areas of the southern and central Aegean Sea and the eastern parts of the Ionian Sea, even reaching areas of the central Mediterranean Sea since 2015 [22,23,24,25,26,27,28,29,30,31]. Such timing accounts for one of the fastest fish invasions ever reported in the region.
The biological and ecological traits of lionfishes favor their invasion successes and impacts to the recipient ecosystems. They are coastal fish species that thrive in a wide range of depths [32,33,34] and usually hide in crevices or caves, thus making commercial fisheries techniques challenging [35]. They can also occur in unstable environmental conditions such as in areas with low salinity and/or characterized as turbid with high sediment loads [36,37], and are generalist predators [38,39,40]. Lionfishes have a reproductive strategy that enables them to mature in less than a year [35]. The production of over two million eggs per year [41], and the planktonic larvae phase with an ability to drift for approximately 20–35 days before settlement, are additional traits that facilitate their dispersion across long distances [42]. Finally, they possess venomous dorsal, pelvic and anal spines that act as a protection from predators [26].
During a recreational scuba dive at the Cyclops dive site (Famagusta, Cyprus; 34.98584 N, 34.07787 E) on 09/02/2021 at 10:30 a.m., a lionfish (~25 cm in total length) was spotted by one of the coauthors of this note (M. S.-O.) at a depth of approximately 5 m near a small ledge. Soon after, a large Octopus vulgaris Cuvier, 1797 approached the lionfish and captured it by attaching its two arms along the lionfish’s body. It slowly hauled it toward its mouth until it finally covered it with all its arms and web. The octopus did not release its prey, despite several attempts to escape. It then moved to the bottom of the ledge and first hid in a small crevice before moving to a bigger crevice. During this last phase, the lionfish was not moving anymore, suggesting that the toxin produced by the octopus was presumably already acting (Figure 1; Electronic Supplementary Material).
To our knowledge, this is the first reliable evidence of lionfish predation in the Mediterranean Sea. In fact, only Turan et al. [43] reported and pictured a dusky grouper Epinephelus marginatus (Lowe, 1834) as “capturing and digesting a lionfish” (see [43]: Figure 8). However, the figure in the study of Turan et al. [43] clearly shows a grouper preying/feeding on a small native scorpaenid species of the genus Scorpaena Linnaeus, 1758.
Several species have been documented to prey on lionfishes in their native ranges, including groupers, cornetfishes, sharks, spotted moray eels and sea eagles [44,45,46,47], but information on predation from the invaded areas has only been rarely documented [48,49,50]. This is most likely because native predators are not yet adapted to this new potential prey. Lack of natural competitors might also be attributed to the higher growth rates and larger sizes of individuals in the invaded regions compared to those residing in the native ones, but also to the overfishing of top predators [35,51,52].
Octopus vulgaris, and octopuses in general, are well-known opportunistic predators with a broad generalist diet, including species with venomous spines [53,54,55,56,57,58]. At the same time, octopuses are also a target fishery species, with catches and landings strongly decreasing in several countries of the Mediterranean Sea [58]. Kleitou et al. [51] recently proposed the protection of native top predators as one of the possible ways to combat NIS establishment in the Mediterranean Sea; a proposal that is in line with our observation. Although more research would be needed to prove that such an observation is not a casual event, and that O. vulgaris may act as a natural predator of lionfishes in the Mediterranean Sea, the present study provides valuable information for future directed studies with the aim to improve the knowledge on NIS spread and developing control efforts. In addition, it suggests that proper fisheries management of O. vulgaris in the Mediterranean Sea could serve to control this and other NIS in the future.

Supplementary Materials

The following are available online at https://www.mdpi.com/2077-1312/9/3/308/s1, Video S1: Octopus vulgaris Cuvier, 1797 preying on a lionfish in Famagusta (Cyprus).

Author Contributions

Conceptualization, F.C. and P.K.; resources, F.C.; data curation, F.C. and P.K.; writing—original draft preparation, F.C. and P.K.; writing—review and editing, M.S.-O., N.D., I.G., S.K., J.L., V.T., F.T., R.V. All authors have read and agreed to the published version of the manuscript.

Funding

P.K. was funded by the LIFE financial instrument of the European Union – RELIONMED project [Grant Agreement LIFE16 NAT/CY/000832].

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

References

  1. Vitousek, P.M.; D’Antonio, C.M.; Loope, L.L.; Westbrooks, R. Biological invasions as global environmental change. Am. Sci. 1996, 84, 468–478. [Google Scholar]
  2. Bax, N.; Williamson, A.; Aguero, M.; Gonzalez, E.; Geeves, W. Marine invasive alien species: A threat to global biodiversity. Mar. Policy 2003, 27, 313–323. [Google Scholar] [CrossRef]
  3. Coll, M.; Piroddi, C.; Steenbeek, J.; Kaschner, K.; Lasrma, F.B.R.; Aguzzi, J.; Ballesteros, E.; Bianchi, C.N.; Corbera, J.; Dailianis, T.; et al. The biodiversity of the Mediterranean Sea: Estimates, Patterns, and Threats. PLoS ONE. 2010, 5, e11842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  4. Edelist, D.; Rilov, G.; Golani, D.; Carlton, J.T.; Spanier, E. Restructuring the Sea: Profound shifts in the world’s most invaded marine ecosystem. Divers. Distrib. 2013, 19, 69–77. [Google Scholar] [CrossRef]
  5. Kalogirou, S. Ecological characteristics of the invasive pufferfish Lagocephalus sceleratus (Gmelin, 1789) in Rhodes, Eastern Mediterranean Sea. A case study from Rhodes. Medit. Mar. Sci. 2013, 14, 251–260. [Google Scholar] [CrossRef] [Green Version]
  6. Katsanevakis, S.; Coll, M.; Piroddi, C.; Steenbeek, C.; Lasram, F.B.R.; Zenetos, A.; Cardoso, A.C. Invading the Mediterranean Sea: Biodiversity patterns shaped by human activities. Front. Mar. Sci. 2014, 1, 32. [Google Scholar] [CrossRef] [Green Version]
  7. Ghermandi, A.; Galil, B.; Gowdy, J.; Nunes, P.A. Jellyfish outbreak impacts on recreation in the Mediterranean Sea: Welfare estimates from a socioeconomic pilot survey in Israel. Ecosyst. Serv. 2015, 11, 140–147. [Google Scholar] [CrossRef]
  8. Zenetos, A.; Çinar, M.E.; Crocetta, F.; Golani, D.; Rosso, A.; Servello, G.; Shenkar, N.; Turon, X.; Verlaque, M. Uncertainties and validation of alien species catalogues: The Mediterranean as an example. Estuar. Coast. Shelf Sci. 2017, 191, 171–187. [Google Scholar] [CrossRef]
  9. Kleitou, P.; Savva, I.; Kletou, D.; Hall-Spencer, J.M.; Antoniou, C.; Christodoulides, Y.; Chartosia, N.; Hadjioannou, L.; Dimitrou, A.C.; Jimenez, C.; et al. Invasive lionfish in the Mediterranean: Low public awareness yet high stakeholder concerns. Mar. Policy 2019, 104, 66–74. [Google Scholar] [CrossRef]
  10. Kleitou, P.; Hall-Spencer, J.; Savva, I.; Kletou, D.; Hadjistylli, M.; Azzurro, E.; Katsanevakis, S.; Antoniou, C.; Hadjioannou, L.; Chartosia, N.; et al. The Case of Lionfish (Pterois miles) in the Mediterranean Sea Demonstrates Limitations in EU Legislation to Address Marine Biological Invasions. J. Mar. Sci. Eng. 2021, in press. [Google Scholar]
  11. Kulbicki, M.; Beets, J.; Chabanet, P.; Cure, K.; Darling, E.; Floeter, S.R.; Galzin, R.; Green, A.; Harmelin-Vivien, M.; Hixon, M.; et al. Distributions of Indo-Pacific lionfishes Pterois spp. in their native ranges: Implications for the Atlantic invasion. Mar. Ecol. Prog. Ser. 2012, 446, 189–205. [Google Scholar] [CrossRef] [Green Version]
  12. Hixon, M.A.; Green, S.J.; Albins, M.A.; Akins, J.L.; Morris Jr., J.A. Lionfish: A major marine invasion. Mar. Ecol. Prog. Ser. 2016, 558, 161–165. [Google Scholar] [CrossRef] [Green Version]
  13. Bors, E.K.; Herrera, S.; Morris Jr, J.A.; Shank, T.M. Population genomics of rapidly invading lionfish in the Caribbean reveals signals of range expansion in the absence of spatial population structure. Ecol. Evol. 2019, 9, 3306–3320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  14. Bumbeer, J.; Moreira da Rocha, R.; Bornatowski, H.; de Castro Robert, M.; Ainsworth, C. Predicting impacts of lionfish (Pterois volitans) invasion in a coastal ecosystem of southern Brazil. Biol. Invasions 2018, 20, 1257–1274. [Google Scholar] [CrossRef]
  15. Golani, D.; Sonin, O. New records of the Red Sea fishes, Pterois miles (Scorpaenidae) and Pteragogus pelycus (Labridae), from the eastern Mediterranean Sea. Jpn. J. Ichthyol. 1992, 39, 167–169. [Google Scholar] [CrossRef]
  16. Bariche, M.; Torres, M.; Azzurro, E. The presence of the invasive Lionfish Pterois miles in the Mediterranean Sea. Mediterr. Mar. Sci. 2013, 14, 292–294. [Google Scholar] [CrossRef]
  17. Turan, C.; Öztürk, B. First record of the lionfish Pterois miles from the Aegean Sea. J. Black Sea/Mediterr. Environ. 2015, 21, 334–338. [Google Scholar]
  18. Oray, I.; Sınay, E.; Saadet Karakulak, F.; Yıldız, T. An expected marine alien fish caught at the coast of Northern Cyprus: Pterois miles (Bennett, 1828). J. Appl. Ichthyol. 2015, 31, 733–735. [Google Scholar] [CrossRef]
  19. Crocetta, F.; Agius, D.; Balistreri, P.; Bariche, M.; Bayhan, Y.K.; Çakir, M.; Ciriaco, S.; Corsini-Foka, M.; Deidun, A.; El Zrelli, R.; et al. New Mediterranean Biodiversity Records (October 2015). Mediterr. Mar. Sci. 2015, 16, 682–702. [Google Scholar] [CrossRef] [Green Version]
  20. Iglésias, P.S.; Frotté, L. Alien marine fishes in Cyprus: Update and new records. Aquat. Invasions 2015, 10, 425–438. [Google Scholar] [CrossRef]
  21. Kletou, D.; Hall-Spencer, J.M.; Kleitou, P. A lionfish (Pterois miles) invasion has begun in the Mediterranean Sea. Mar. Biodivers. Rec. 2016, 9, 46. [Google Scholar] [CrossRef] [Green Version]
  22. Dailianis, T.; Akyol, O.; Babali, N.; Bariche, M.; Crocetta, F.; Gerovasileiou, V.; Ghanem, R.; Gökoğlu, M.; Hasiotis, T.; Izquierdo-Muñoz, A.; et al. New Mediterranean Biodiversity Records (July 2016). Mediterr. Mar. Sci. 2016, 17, 608–626. [Google Scholar] [CrossRef] [Green Version]
  23. Mytilineou, Ch.; Akel, E.H.K.; Babali, N.; Balistreri, P.; Bariche, M.; Boyaci, Y.Ö.; Cilenti, L.; Constantinou, C.; Crocetta, F.; Çelik, M.; et al. New Mediterranean Biodiversity Records (November, 2016). Mediterr. Mar. Sci. 2016, 17, 794–821. [Google Scholar] [CrossRef] [Green Version]
  24. Azzurro, E.; Stancanelli, B.; Di Martino, V.; Bariche, M. Range expansion of the common lionfish Pterois miles (Bennett, 1828) in the Mediterranean Sea: An unwanted new guest for Italian waters. Bioinvasions Rec. 2017, 6, 95–98. [Google Scholar] [CrossRef]
  25. Bariche, M.; Kleitou, P.; Kalogirou, S.; Bernardi, G. Genetics reveal the identity and origin of the lionfish invasion in the Mediterranean Sea. Sci. Rep. 2017, 7, 6782. [Google Scholar] [CrossRef] [Green Version]
  26. Karachle, P.K.; Corsini Foka, M.; Crocetta, F.; Dulčić, J.; Dzhembekova, N.; Galanidi, M.; Ivanova, P.; Shenkar, N.; Skolka, M.; Stefanova, E.; et al. Setting-up a billboard of marine invasive species in the ESENIAS area: Current situation and future expectancies. Acta Adriatica 2017, 58, 429–458. [Google Scholar] [CrossRef] [Green Version]
  27. Yokeş, M.B.; Andreou, V.; Bakiu, R.; Bonanomi, S.; Camps, J.; Christidis, G.; Crocetta, F.; Giovos, I.; Gori, A.; Juretić, T.; et al. New Mediterranean Biodiversity Records (November 2018). Mediterr. Mar. Sci. 2018, 19, 675–689. [Google Scholar] [CrossRef] [Green Version]
  28. Charalambos, A.; Kleitou, P.; Crocetta, F.; Lorenti, M. First record of ectoparasitic isopods on the invasive lionfish Pterois miles (Bennett, 1828). Spixiana 2019, 42, 217–218. [Google Scholar]
  29. Dimitriadis, C.; Galanidi, M.; Zenetos, A.; Corsini-Foka, M.; Giovos, I.; Karachle, P.; Fournari-Konstantinidoy, I.; Kytinou, E.; Issaris, Y.; Azzurro, E.; et al. Updating the occurrences of Pterois miles in the Mediterranean Sea, with considerations on thermal boundaries and future range expansion. Mediterr. Mar. Sci. 2020, 21, 62–69. [Google Scholar] [CrossRef]
  30. Katsanevakis, S.; Poursanidis, D.; Hoffman, R.; Rizgalla, J.; Bat-Sheva Rothman, S.; Levitt-Barmats, Y.; Hadjioannou, L.; Trkov, D.; Garmendia, J.M.; Rizzo, M.; et al. Unpublished Mediterranean records of marine alien species. Bioinvasions Rec. 2020, 9, 165–182. [Google Scholar] [CrossRef]
  31. Poursanidis, D.; Kalogirou, S.; Azzurro, E.; Parravicini, V.; Bariche, M.; Dohnaf, H. Habitat suitability, niche unfilling and the potential spread of Pterois miles in the Mediterranean Sea. Mar. Poll. Bull. 2020, 154, 111054. [Google Scholar] [CrossRef] [PubMed]
  32. Schultz, E.T. Pterois volitans and Pterois miles: Two valid species. Copeia 1986, 3, 686–690. [Google Scholar] [CrossRef]
  33. Andradi-Brown, D.A. Invasive Lionfish (Pterois volitans and P. miles): Distribution, Impact, and Management. In Mesophotic Coral Ecosystems. Coral Reefs of the World; Loya, Y., Puglise, K., Bridge, T., Eds.; Springer: Cham, Germany, 2019; Volume 12, pp. 931–941. [Google Scholar] [CrossRef]
  34. Gress, E.; Andradi-Brown, D.A.; Woodall, L.; Schofield, P.J.; Stanley, K.; Rogers, A.D. Lionfish (Pterois spp.) invade the upper-bathyal zone in the western Atlantic. PeerJ 2017, 5, e3683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  35. Savva, I.; Chartosia, N.; Antoniou, C.; Kleitou, P.; Georgiou, A.; Stern, N.; Hadjioannou, L.; Jimenez, C.; Andreou, V.; Hall-Spencer, J.M.; et al. They are here to stay: The biology and ecology of lionfish (Pterois miles) in the Mediterranean Sea. J. Fish Biol. 2020, 97, 148–162. [Google Scholar] [CrossRef] [PubMed]
  36. Cure, K.; Mcllwain, J.; Hixon, M.A. Habitat plasticity in native Pacific red lionfish Pterois volitans facilitates successful invasion of the Atlantic. Mar. Ecol. Prog. Ser. 2014, 506, 243–253. [Google Scholar] [CrossRef] [Green Version]
  37. Jud, Z.R.; Nichols, P.K.; Layman, C.A. Broad salinity tolerance in the invasive lionfish Pterois spp. may facilitate estuarine colonization. Environ. Biol. Fish. 2015, 98, 135–143. [Google Scholar] [CrossRef]
  38. Eddy, C.; Pitt, J.; Morris, J.; Smith, S.; Goodbody-Gringley, G.; Bernal, D. Diet of invasive lionfish (Pterois volitans and P. miles) in Bermuda. Mar. Ecol. Prog. Ser. 2016, 558, 193–206. [Google Scholar] [CrossRef] [Green Version]
  39. Peake, J.; Bogdanoff, A.K.; Layman, C.A.; Castillo, B.; Reale-Munroe, K.; Chapman, J.; Dahl, K.; Patterson III, W.F.; Eddy, C.; Ellis, R.D.; et al. Feeding ecology of invasive lionfish (Pterois volitans and Pterois miles) in the temperate and tropical western Atlantic. Biol. Invasions 2018, 20, 2567–2597. [Google Scholar] [CrossRef]
  40. Zannaki, K.; Corsini-Foka, M.; Kampouris, Th.E.; Batjakas, I.E. First results on the diet of the invasive Pterois miles (Actinopterygii: Scorpaenidae) in the Hellenic waters. Acta Ichthyol. Piscat. 2019, 49, 311–317. [Google Scholar] [CrossRef] [Green Version]
  41. Morris, J.A.; Whitfield, P.E. Biology, Ecology, Control and Mmanagement of the Invasive Indo-Pacific Lionfish: An Updated Untegrated Assessment; NOAA Technical Memorandum NOS NCCOS 99: Beaufort, SC, USA, December 2009. [Google Scholar]
  42. Ahrenholz, D.W.; Morris, J.A. Larval duration of the lionfish, Pterois volitans along the Bahamian Archipelago. Environ. Biol. Fish. 2010, 88, 305–309. [Google Scholar] [CrossRef]
  43. Turan, C.; Uygur, N.; İğde, M. Lionfishes Pterois miles and Pterois volitans in the North-eastern Mediterranean Sea: Distribution, Habitation, Predation and Predators. NESciences 2017, 2, 35–43. [Google Scholar] [CrossRef] [Green Version]
  44. Bernadsky, G.; Goulet, D. A natural predator of the lionfish, Pterois miles. Copeia 1991, 1, 230–231. [Google Scholar] [CrossRef]
  45. Barbour, A.B.; Allen, M.S.; Frazer, T.K.; Sherman, K.D. Evaluating the Potential Efficacy of Invasive Lionfish (Pterois volitans) Removals. PLoS ONE 2011, 6, e19666. [Google Scholar] [CrossRef]
  46. Mumby, P.J.; Harborne, A.R.; Brumbaugh, D.R. Grouper as a Natural Biocontrol of Invasive Lionfish. PLoS ONE 2011, 6, e21510. [Google Scholar] [CrossRef] [PubMed]
  47. Bos, A.R.; Sanad, A.M.; Elsayed, K. Gymnothorax spp. (Muraenidae) as natural predators of the lionfish Pterois miles in its native biogeographical range. Environ. Biol. Fish. 2017, 100, 745–748. [Google Scholar] [CrossRef]
  48. Maljković, A.; Van Leeuwen, T.E.; Cove, S.N. Predation on the invasive red lionfish, Pterois volitans (Pisces: Scorpae-nidae), by native groupers in the Bahamas. Coral Reefs 2008, 27, 501. [Google Scholar] [CrossRef]
  49. Diller, J.L.; Frazer, T.K.; Jacoby, C.A. Coping with the lionfish invasion: Evidence that naïve, native predators can learn to help. J. Exp. Mar. Biol. Ecol. 2014, 455, 45–49. [Google Scholar] [CrossRef]
  50. Muñoz, R.C. Evidence of natural predation on invasive lionfish, Pterois spp., by the spotted moray eel, Gymnothorax moringa. Bull. Mar. Sci. 2017, 93, 789–790. [Google Scholar] [CrossRef]
  51. Darling, E.S.; Green, S.J.; O’Leary, J.K.; Côté, I.M. Indo-Pacific lionfish are larger and more abundant on invaded reefs: A comparison of Kenyan and Bahamian lionfish populations. Biol. Invasions 2011, 13, 2045–2051. [Google Scholar] [CrossRef]
  52. Kleitou, P.; Crocetta, F.; Giakoumi, S.; Giovos, I.; Hall-Spencer, J.M.; Kalogirou, S.; Kletou, D.; Moutopoulos, D.H.; Rees, S. Fishery reforms for the management of non-indigenous species. J. Environ. Manag. 2021, 280, 111690. [Google Scholar] [CrossRef] [PubMed]
  53. Taylor, P.B.; Chen, L.C. The predator-prey relationship between the octopus (Octopus bimaculatus) and the California scorpionfish (Scorpaena guttata). Pac. Sci. 1969, 23, 311–316. [Google Scholar]
  54. Ambrose, R.F.; Nelson, B.V. Predation by Octopus vulgaris in the Mediterranean. Mar. Ecol. 1983, 4, 251–261. [Google Scholar] [CrossRef]
  55. Hanlon, R.T.; Messenger, J.B. Cephalopod Behaviour; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
  56. Villanueva, R.; Nozais, C.; Boletzky, S.v. Swimming behaviour and food searching in planktonic Octopus vulgaris Cuvier from hatching to settlement. J. Exp. Mar. Biol. Ecol. 1997, 208, 169–184. [Google Scholar] [CrossRef]
  57. Pierce, G.J.; Allcock, L.; Bruno, I.; Bustamante, P.; González, A.; Guerra, A.; Jereb, P.; Lefkaditou, E.; Malham, S.; Moreno, A.; et al. Cephalopod Biology and Fisheries in Europe; ICES cooperative research report, 303; ICES: Copenhagen, Denmark, August 2010; p. 175. [Google Scholar]
  58. Sauer, W.H.H.; Gleadall, I.G.; Downey-Breedt, N.; Doubleday, Z.; Gillespie, G.; Haimovici, M.; Ibáñez, C.M.; Katugin, O.N.; Leporati, S.; Lipinski, M.R.; et al. World Octopus Fisheries. Rev. Fish. Sci. Aquac. 2021, 1–151. [Google Scholar] [CrossRef]
Figure 1. Octopus vulgaris Cuvier, 1797 preying on a lionfish in Famagusta (Cyprus). (A) The octopus soon after the catch. (B) The octopus enveloping the lionfish with all the arms and the web, moving to the bottom of the cliff. (C) The octopus hiding in a small crevice. (D) The octopus while moving to a bigger crevice. Photos by Maria Shokouros-Oskarsson.
Figure 1. Octopus vulgaris Cuvier, 1797 preying on a lionfish in Famagusta (Cyprus). (A) The octopus soon after the catch. (B) The octopus enveloping the lionfish with all the arms and the web, moving to the bottom of the cliff. (C) The octopus hiding in a small crevice. (D) The octopus while moving to a bigger crevice. Photos by Maria Shokouros-Oskarsson.
Jmse 09 00308 g001
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Crocetta, F.; Shokouros-Oskarsson, M.; Doumpas, N.; Giovos, I.; Kalogirou, S.; Langeneck, J.; Tanduo, V.; Tiralongo, F.; Virgili, R.; Kleitou, P. Protect the Natives to Combat the Aliens: Could Octopus vulgaris Cuvier, 1797 Be a Natural Agent for the Control of the Lionfish Invasion in the Mediterranean Sea? J. Mar. Sci. Eng. 2021, 9, 308. https://doi.org/10.3390/jmse9030308

AMA Style

Crocetta F, Shokouros-Oskarsson M, Doumpas N, Giovos I, Kalogirou S, Langeneck J, Tanduo V, Tiralongo F, Virgili R, Kleitou P. Protect the Natives to Combat the Aliens: Could Octopus vulgaris Cuvier, 1797 Be a Natural Agent for the Control of the Lionfish Invasion in the Mediterranean Sea? Journal of Marine Science and Engineering. 2021; 9(3):308. https://doi.org/10.3390/jmse9030308

Chicago/Turabian Style

Crocetta, Fabio, Maria Shokouros-Oskarsson, Nikolaos Doumpas, Ioannis Giovos, Stefanos Kalogirou, Joachim Langeneck, Valentina Tanduo, Francesco Tiralongo, Riccardo Virgili, and Periklis Kleitou. 2021. "Protect the Natives to Combat the Aliens: Could Octopus vulgaris Cuvier, 1797 Be a Natural Agent for the Control of the Lionfish Invasion in the Mediterranean Sea?" Journal of Marine Science and Engineering 9, no. 3: 308. https://doi.org/10.3390/jmse9030308

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop