Redirigiendo al acceso original de articulo en 18 segundos...
Inicio  /  Applied Sciences  /  Vol: 11 Par: 10 (2021)  /  Artículo
ARTÍCULO
TITULO

Strength and Durability of Hybrid Fiber-Reinforced Latex-Modified Rapid-Set Cement Preplaced Concrete for Emergency Concrete Pavement Repair

Su-Jin Lee    
Hyung-Jin Shin and Chan-Gi Park    

Resumen

The benefits of using reinforcing fibers in latex-modified rapid-set cement preplaced concrete for emergency pavement repairs were examined in terms of strength, permeability, and durability as functions of the type of fiber. Single-type fibers, including jute, poly (vinyl alcohol) (PVA), and nylon fibers, as well as hybrid fiber mixtures prepared with two of the aforementioned fibers at a 1:1 weight ratio, were evaluated. Fibers were incorporated into the concrete mixture at 1.2 kg/m3. A vibratory press compactor that simulates roller compaction was used to increase compaction and densification of the resulting pavement repair material. The hybrid fiber-reinforced latex-modified rapid-set cement preplaced concrete (HFLMC) was manufactured to satisfy the criteria for opening traffic, i.e., compressive strength of 21 MPa or higher, and flexural strength of 3.5 MPa or higher after 4 h. Pavement requiring repair was removed and replaced with coarse aggregate. The rapid-set binder, fibers, and latex were then mixed and placed onto the coarse aggregate layer. The repair was considered complete after compaction. The resulting HFLMC satisfied all of the test criteria. Furthermore, concretes made with hybrid fibers were more mechanically sound than those made with a single fiber variety. Hybrid fiber concretes made with PVA and nylon fibers exhibited the best properties for emergency pavement repair. These results indicate that HFLMC is suitable for emergency pavement repair.

 Artículos similares

       
 
Ayman El-Zohairy, Hani Salim, Hesham Shaaban and Mahmoud T. Nawar    
Fatigue in steel?concrete composite beams can result from cyclic loading, causing stress fluctuations that may lead to cumulative damage and eventual failure over an extended period. In this paper, the experimental findings from fatigue loading tests on ... ver más
Revista: Infrastructures

 
Ahlam A. Abbood, Nazar Oukaili, Abbas A. Allawi and George Wardeh    
This study aimed to evaluate the effectiveness of a novel concrete-encased column (CE) using small circular steel tubes filled with cementitious grouting material (GFST) as the primary reinforcement instead of traditional steel bars. The research involve... ver más
Revista: Infrastructures

 
Yu Yang, Changhao Xin, Yidan Sun, Junzhen Di and Pengfei Liang    
Incomplete data indicate that coal gangue is accumulated in China, with over 2000 gangue hills covering an area exceeding 200,000 mu and an annual growth rate surpassing 800 million tons. This accumulation not only signifies a substantial waste of resour... ver más
Revista: Applied Sciences

 
Leonid Dvorkin, Vitaliy Marchuk, Katarzyna Mróz, Marcin Maroszek and Izabela Hager    
Compositions of fine-grained concrete mixtures that provide the minimum required strength values in 1 day (7.5 MPa) have been developed. A comparison was made of the test results of the properties of samples printed on a 3D printer with samples made acco... ver más
Revista: Applied Sciences

 
Pawel Lisowski and Michal A. Glinicki    
The wide use of multi-component cement of highly reduced Portland clinker factor is largely impeded by detrimental changes in the rheological properties of concrete mixes, a substantial reduction in the early rate of cement hardening, and sometimes the i... ver más
Revista: Applied Sciences