Resumen
As the largest irrigation area in northwest China, the middle and lower reaches of the Yarkant River basin are limited in economic development by the shortage of surface water resources and the increasing demand for groundwater resources from agriculture and industry, and the phenomenon of over-exploitation is becoming increasingly serious, which is not in line with the concept of sustainable development. Therefore, improving the efficiency of water resource utilization while curbing the trend of declining groundwater levels is an important issue that needs to be addressed in the middle and lower reaches of Yarkant at present, specifically, by establishing a distributed hydrological model MIKE SHE based on a soil texture dataset. The model efficiency coefficient Ens, the water balance coefficient (WB), the correlation coefficient r, and the relative error Re were selected to evaluate the model?s applicability. The results were: Ens = 0.84, WB = 0.80, and r = 0.96 for the annual scale runoff simulation and Ens = 0.85, RE = 0.61, and r = 0.96 for the monthly scale runoff simulation. The relative errors between the simulated and observed values of the typical observation wells were 3.45%, 1.59%, 2.52%, and 0.35%. According to the analysis of the soil parameters on the runoff sensitivity and groundwater table sensitivity, the saturated hydraulic conductivity had the greatest effect on the peak discharge. The results show that the MIKE SHE model has some applicability in the lower and middle reaches of the Yarkant River basin.