Redirigiendo al acceso original de articulo en 18 segundos...
Inicio  /  Buildings  /  Vol: 13 Par: 9 (2023)  /  Artículo
ARTÍCULO
TITULO

Cable Force Calculation of Cable Hoisting of CFST Arch Bridge Research

Yi Jia    
Chaokuan Wei    
Ziqiu Huang    
Qi Li    
Ping Liao and Wencong Lin    

Resumen

To effectively control the stress state and spatial alignment of arch ribs in the cable hoisting construction of a long-span, concrete-filled, steel tube arch bridge and ensure the safety of the structure, it is necessary to calculate and determine the appropriate cable force. Based on the actual project of a double-span, concrete-filled, steel tubular arch bridge, the construction stage of the left span of the bridge from the beginning of construction to the closure is taken as an example. The linear control method of ?quiet do not move? is adopted. Based on the principle that the vertical displacement of the front end of the installed segment caused by the self-weight of the new hoisting segment is equal to the vertical displacement of the front end of the previous segment caused by the tension of the new hoisting segment, the tension cable force is calculated by forward iteration. Finally, based on the theory of the stress-free state method, the ideal linear design of the structure was achieved. The results show that after the closure of the bridge, the error range of the cable tension force is -13.33?15.40% on the left bank and -8.37?11.00% on the right bank. The elevation error of the arch rib is -0.003?0.043 m on the left bank and -0.007?0.032 m on the right bank. The overall stress error of the bridge arch is ±7.0 MPa. The error between the theoretical value and the actual value is within the scope of the specification requirements, which meets the specification requirements. After the closure, the arch shape of the bridge meets the smooth requirements.

 Artículos similares

       
 
Jizhong Huang, Ruoyu Zhang, Qingyang Luo, Xiuwei Guo and Meigen Cao    
In this paper, the mechanical model of grotto?eave system with cable inerter viscous damper (CIVD) is established, and the vibration control equations are established. Firstly, the stochastic response is carried out, and the optimization design of design... ver más
Revista: Buildings

 
Dongning Li, Deshan Ma, Dong Su, Shaohua Rao, Wenbin Wang and Chengyu Hong    
Long-term monitoring data for super-long piles are scarce and valuable. This paper reports axial strain measurements of a cast-in-place large-diameter pile embedded 76.7 m into a ?weathered trench? of granite in Nanshan District, Shenzhen, China, using B... ver más
Revista: Buildings

 
Mingmin Ding, Bin Luo, Shuyao Ding, Yuzhou Shen and Lifan Huang    
According to existing rigid roofing projects, a new structure called the Levy hinged-beam cable dome is proposed. By replacing the upper flexible cables with hinged beams, rigid plates can be installed overhead. To fulfill the requirements of integral to... ver más
Revista: Buildings