Redirigiendo al acceso original de articulo en 24 segundos...
Inicio  /  Applied System Innovation  /  Vol: 2 Par: 1 (2019)  /  Artículo
ARTÍCULO
TITULO

Motion Control System of Unmanned Railcars Based on Image Recognition

Yuan-Wei Tseng    
Tsung-Wui Hung    
Chung-Long Pan and Rong-Ching Wu    

Resumen

The main purpose of this paper is to construct an autopilot system for unmanned railcars based on computer vision technology in a fixed luminous environment. Four graphic predefined signs of different colors and shapes serve as motion commands of acceleration, deceleration, reverse and stop for the motion control system of railcars based on image recognition. The predefined signs? strong classifiers were trained based on Haar-like feature training and AdaBoosting from Open Source Computer Vision Library (OpenCV). Comprehensive system integrations such as hardware, device drives, protocols, an application program in Python and man machine interface have been properly done. The objectives of this research include: (1) Verifying the feasibility of graphic predefined signs serving as commands of a motion control system of railcars with computer vision through experiments; (2) Providing reliable solutions for motion control of unmanned railcars, based on image recognition at affordable cost. The experiment results successfully verify the proposed methodology and integrated system. In the main program, every predefined sign must be detected at least three times in consecutive images within 0.2 s before the system confirms the detection. This digital filter like feature can filter out false detections and make the correct rate of detections close to 100%. After detecting a predefined sign, it was observed that the system could generate new motion commands to drive the railcars within 0.3 s. Therefore, both real time performance and the precision of the system are good. Since the sensing and control devices of the proposed system consist of computer, camera and predefined signs only, both the implementation and maintenance costs are very low. In addition, the proposed system is immune to electromagnetic interference, so it is ideal to merge into popular radio Communication Based Train Control (CBTC) systems in railways to improve the safety of operations.

 Artículos similares

       
 
Fuyin Cui, Shuling Chen, Hongbin Hao, Changzhi Han, Ruidong Ni and Yueyue Zhuo    
To address the unstable motion of a tension leg platform (TLP) for floating wind turbines in various sea conditions, an improved method of incorporating a tuned liquid multi-column damper (TLMCD) into the TLP foundation is proposed. In order to evaluate ... ver más

 
Bing Han, Zaiyu Duan, Zhouhua Peng and Yuhang Chen    
A fuzzy control improvement method is proposed with an integral line-of-sight (ILOS) guidance principle to meet the needs of autonomous navigation and high-precision control of ship trajectories. Firstly, a three-degree-of-freedom ship motion model was e... ver más

 
Giacomo Borelli, Gabriella Gaias and Camilla Colombo    
In recent years, the interest in proximity operations to uncooperative and non-collaborative objects has been growing and and demanding for specific technology advances to tackle these challenging cases of in-orbit servicing and removal missions. Indeed,... ver más
Revista: Aerospace

 
Gokhan Gungor and Mehdi Afshari    
In this study, a sensorimotor controller is designed to characterize the required muscle force to enable a robotics system to perform a human-like circular movement. When the appropriate muscle internal forces are chosen, the arm end-point tracks the des... ver más
Revista: Applied Sciences

 
Nader Vahdati, Aamna Alteneiji, Fook Fah Yap and Oleg Shiryayev    
Engine mounts serve three primary purposes: (1) to support the weight of the engine, (2) to lessen the transmitted engine disturbance forces to the vehicle structure/chassis or airplane fuselage, and (3) to limit the engine motion brought on by shock exc... ver más
Revista: Applied Sciences