Resumen
In this study, the formation of thin-film barrier coatings based on a highly conductive Bi1.60Er0.4O3 (EDB) solid electrolyte on supporting Ce0.8Sm0.2O1.9 (SDC) electrolyte substrates was implemented for the first time using electrophoretic deposition (EPD). The electrokinetic properties of EDB-based suspensions in a non-aqueous dispersion medium of isopropanol modified with small additions of polyethyleneimine (PEI, 0.26 g/L) and acetylacetone (0.15 g/L), as well as in a mixed isopropanol/acetylacetone (70/30 vol.%) medium, were studied. The dependences of the thickness of the EDB coatings on voltage and deposition time were obtained using deposition on a model Ni foil electrode. Preliminary synthesis of a conductive polypyrrole (PPy) polymer film was used to create surface conductivity on non-conductive SDC substrates. The efficiency of using a modified dispersion medium based on isopropanol to obtain a continuous EDB coating 12 µm thick, sintered at a temperature of 850 °C for 5 h, is shown. The microstructure and morphology of the surface of the EDB coating were studied. A Pt/SDC/EDB/Pt cell was used to characterize the coating?s conductivity. The EPD method is shown to be promising for the formation of barrier coatings based on doped bismuth oxide. The developed method can be used for creating cathode barrier layers in SOFC technology.