Redirigiendo al acceso original de articulo en 24 segundos...
Inicio  /  Hydrology  /  Vol: 3 Par: 4 (2016)  /  Artículo
ARTÍCULO
TITULO

Understanding the Effects of Climate Change on Urban Stormwater Infrastructures in the Las Vegas Valley

Ranjeet Thakali    
Ajay Kalra and Sajjad Ahmad    

Resumen

The intensification of the hydrological cycle due to climate change entails more frequent and intense rainfall. As a result, urban water systems will be disproportionately affected by the climate change, especially in such urban areas as Las Vegas, which concentrates its population, infrastructure, and economic activity. Proper design and management of stormwater facilities are needed to attenuate the severe effects of extreme rainfall events. The North American Regional Climate Change Assessment Program is developing multiple high-resolution projected-climate data from different combinations of regional climate models and global climate models. The objective of this study was to evaluate existing stormwater facilities of a watershed within the Las Vegas Valley in southern Nevada by using a robust design method for the projected climate. The projected climate change was incorporated into the model at the 100 year return period with 6 h duration depths, using a statistical regionalization analysis method. Projection from different sets of climate model combinations varied substantially. Gridded reanalysis data were used to assess the performance of the climate models. An existing Hydrologic Engineering Center?s Hydrological Modeling System (HEC-HMS) model was implemented using the projected change in standard design storm. Hydrological simulation using HEC-HMS showed exceedances of existing stormwater facilities that were designed under the assumption of stationarity design depth. Recognizing climate change and taking an immediate approach in assessing the city?s vulnerability by using proper strategic planning would benefit the urban sector and improve the quality of life.

 Artículos similares

       
 
Qiuying Han, Wenxue Che, Hui Zhao, Jiahui Ye, Wenxuan Zeng, Yufeng Luo, Xinzhu Bai, Muqiu Zhao and Yunfeng Shi    
Eutrophication due to aquaculture can cause the decline of seagrasses and impact their carbon storage capacity. This study explored the effects of aquaculture on the sediment organic carbon (SOC) in Thalassia testudinum seagrass beds using enzyme activit... ver más
Revista: Water

 
Xiaojin Huang, Renzhong Guo, Xiaoming Li, Minmin Li, Yong Fan and Yaxing Li    
Understanding the economic impact of COVID-19 is the foundation for formulating targeted policies promoting economic recovery. This study uses panel data of the county economy in the Guangdong?Hong Kong?Macao Greater Bay Area (GBA) from 2017 to 2022. Fir... ver más

 
Ryan Good, David Nguyen, Hossein Bonakdari, Andrew Binns and Bahram Gharabaghi    
Predicting morphological adjustments in alluvial meandering streams remains a challenging task due to the complex nature of the governing inter-related dynamic flow and sediment transport processes. This difficulty is increased in streams with irregular ... ver más
Revista: Water

 
Lei Jiang and Ziyue Zeng    
Since the impoundment of the Three Gorges Project, the downstream hydrology and river dynamics have been modified. The Yichang?Chenglingji Reach (YCR), as a part of the mainstream of the Middle Yangtze River, has consequently been significantly scoured, ... ver más
Revista: Water

 
Tangwu Yang, Dianpeng Li, Qing Xu, Yijia Zhu, Zhengjie Zhu, Xin Leng, Dehua Zhao and Shuqing An    
Long-term fishing bans have spurred extensive debate regarding their impacts on ecosystem structures, functions, and water qualities. However, data on the effects of specific changes induced by fishing bans on ecosystem structures, functions, and water q... ver más
Revista: Water