Redirigiendo al acceso original de articulo en 18 segundos...
Inicio  /  Algorithms  /  Vol: 15 Par: 8 (2022)  /  Artículo
ARTÍCULO
TITULO

Design of Multi-Objective-Based Artificial Intelligence Controller for Wind/Battery-Connected Shunt Active Power Filter

Srilakshmi Koganti    
Krishna Jyothi Koganti and Surender Reddy Salkuti    

Resumen

Nowadays, the integration of renewable energy sources such as solar, wind, etc. into the grid is recommended to reduce losses and meet demands. The application of power electronics devices (PED) to control non-linear, unbalanced loads leads to power quality (PQ) issues. This work presents a hybrid controller for the self-tuning filter (STF)-based Shunt active power filter (SHAPF), integrated with a wind power generation system (WPGS) and a battery storage system (BS). The SHAPF comprises a three-phase voltage source inverter, coupled via a DC-Link. The proposed neuro-fuzzy inference hybrid controller (NFIHC) utilizes both the properties of Fuzzy Logic (FL) and artificial neural network (ANN) controllers and maintains constant DC-Link voltage. The phase synchronization was generated by a self-tuning filter (STF) for the effective working of SHAPF during unbalanced and distorted supply voltages. In addition, STF also does the work of low-pass filters (LPFs) and HPFs (high-pass filters) for splitting the Fundamental component (FC) and Harmonic component (HC) of the current. The control of SHAPF works on d-q theory with the advantage of eliminating low-pass filters (LPFs) and phase-locked loop (PLL). The prime objective of the projected work is to regulate the DC-Link voltage during wind uncertainties and load variations, and minimize the total harmonic distortion (THD) in the current waveforms, thereby improving the power factor (PF).Test studies with various combinations of balanced/unbalanced loads, wind velocity variations, and supply voltage were used to evaluate the suggested method?s superior performance. In addition, the comparative analysis was carried out with those of the existing controllers such as conventional proportional-integral (PI), ANN, and FL.

 Artículos similares

       
 
Jordi Renau Martínez, Víctor García Peñas, Manuel Ibáñez Arnal, Alberto Giménez Sancho, Eduardo López González, Adelaida García Magariño, Félix Terroba Ramírez, Francisco Javier Moreno Ayerbe and Fernando Sánchez López    
This article presents the design and manufacturing of a hydrogen-powered unmanned aquatic surface vehicle (USV) hull. The design process comprised three stages: (1) defining the requirements for a preliminary geometry, (2) verifying the hydrodynamic hull... ver más

 
Naseem Adnan Alsamarai and Osman Nuri Uçan    
Today, the IoT has become a vital part of our lives because it has entered into the precise details of human life, like smart homes, healthcare, eldercare, vehicles, augmented reality, and industrial robotics. Cloud computing and fog computing give us se... ver más
Revista: Applied Sciences

 
D. Criado-Ramón, L. G. B. Ruiz, J. R. S. Iruela and M. C. Pegalajar    
This paper introduces the first completely unsupervised methodology for non-intrusive load monitoring that does not rely on any additional data, making it suitable for real-life applications. The methodology includes an algorithm to efficiently decompose... ver más
Revista: Information

 
R. Gayathri, Jen-Yi Chang, Chia-Cheng Tsai and Tai-Wen Hsu    
An oscillating water column (OWC) is designed for the extraction and conversion of wave energy into usable electrical power, rather than being a standalone renewable energy source. This review paper presents a comprehensive analysis of the mathematical m... ver más

 
Shaahin Angizi, Naima Ahmed Fahmi, Deniz Najafi, Wei Zhang and Deliang Fan    
In this work, we present an efficient Processing in MRAM-Accelerated De Bruijn Graph-based DNA Assembly platform, named PANDA, based on an optimized and hardware-friendly genome assembly algorithm. PANDA is able to assemble large-scale DNA sequence datas... ver más