Redirigiendo al acceso original de articulo en 17 segundos...
Inicio  /  Buildings  /  Vol: 12 Par: 8 (2022)  /  Artículo
ARTÍCULO
TITULO

Evaluating the Impact of External Support on Green Building Construction Cost: A Hybrid Mathematical and Machine Learning Prediction Approach

Odey Alshboul    
Ali Shehadeh    
Ghassan Almasabha    
Rabia Emhamed Al Mamlook and Ali Saeed Almuflih    

Resumen

As a fundamental feature of green building cost forecasting, external support is crucial. However, minimal research efforts have been directed to developing practical models for determining the impact of external public and private support on green construction projects? costs. To fill the gap, the current research aims to develop a mathematical model to explore the balance of supply and demand under deflationary conditions for external green construction support and the accompanying spending adjustment processes. The most current datasets from 3578 green projects across Northern America were collected, pre-processed, analyzed, post-processed, and evaluated via cutting-edge machine learning (ML) techniques to retrieve the deep parameters affecting the green construction cost prediction process. According to the findings, public and private investments in green construction are projected to decrease the cost of green buildings. Furthermore, the impact of public and private investment on green construction cost reduction during deflationary periods is more significant than its influence during inflation. As a result, decision-makers may utilize the suggested model to monitor and evaluate the yearly optimal external investment in green building construction.

PÁGINAS
pp. 0 - 0
MATERIAS
INFRAESTRUCTURA
REVISTAS SIMILARES

 Artículos similares