Redirigiendo al acceso original de articulo en 21 segundos...
Inicio  /  Buildings  /  Vol: 12 Par: 2 (2022)  /  Artículo
ARTÍCULO
TITULO

Study of Damage Quantification of Concrete Drainage Pipes Based on Point Cloud Segmentation and Reconstruction

Gaozhao Pang    
Niannian Wang    
Hongyuan Fang    
Hai Liu and Fan Huang    

Resumen

The urban drainage system is an important part of the urban water cycle. However, with the aging of drainage pipelines and other external reasons, damages such as cracks, corrosion, and deformation of underground pipelines can cause serious consequences such as urban waterlogging and road collapse. At present, the detection of underground drainage pipelines mostly focuses on the qualitative identification of pipeline damage, and it is impossible to quantitatively analyze pipeline damage. Therefore, a method to quantify the damage volume of concrete pipes that combines surface segmentation and reconstruction is proposed. An RGB-D sensor is used to collect the damage information of the drainage pipeline, and the collected depth frame is registered to generate the pipeline?s surface point cloud. Voxel sampling and Gaussian filtering are used to improve data processing efficiency and reduce noise, respectively, and the RANSAC algorithm is used to remove the pipeline?s surface information. The ball-pivoting algorithm is used to reconstruct the surface of the segmented damage data and pipe?s surface information, and finally to obtain the damage volume. In order to evaluate, we conducted our research on real-world materials. The measurement results show that the method proposed in this paper measures an average relative error of 7.17% for the external damage volume of concrete pipes and an average relative error of 5.22% for the internal damage measurements of concrete pipes.

 Artículos similares

       
 
Artem Marchenko, Rolands Kromanis and André G. Dorée    
Temperature is the main driver of bridge response. It is continuously applied and may have complex distributions across the bridge. Daily temperature loads force bridges to undergo deformations that are larger than or equal to peak-to-peak traffic loads.... ver más
Revista: Infrastructures

 
Bikram Kesharee Patra, Rocio L. Segura and Ashutosh Bagchi    
This study addresses the vital issue of the variability associated with modeling decisions in dam seismic analysis. Traditionally, structural modeling and simulations employ a progressive approach, where more complex models are gradually incorporated. Fo... ver más
Revista: Infrastructures

 
Jing Liu, Tao Zhang, Zhicheng Pan and Fanjun Ma    
Concrete-filled round-ended steel tubes (CFRTs) are a unique type of composite stub columns, which have the advantage of aesthetics and a well-distributed major?minor axis. Thus, the structure has been widely employed as piers and columns in bridges. To ... ver más
Revista: Buildings

 
Lei Zhang, Cuikun Wang, Caihua Chen and Mingzhe Cui    
Against the backdrop of China?s continuous promotion of green and low-carbon transformation and the development of construction industrialization, high-strength composite structural systems have significant development prospects. However, their research ... ver más
Revista: Buildings

 
Huayang Yu, Yihao Deng, Guansen Deng and Niya Dong    
Fatigue failure in asphalt pavements, caused by continuous loading, primarily occurs at the interface between the asphalt binder and the aggregate (adhesive failure) or within the asphalt binder itself (cohesive failure). This study conducted variable st... ver más
Revista: Buildings