Redirigiendo al acceso original de articulo en 18 segundos...
Inicio  /  Algorithms  /  Vol: 15 Par: 1 (2022)  /  Artículo
ARTÍCULO
TITULO

Deep Transfer Learning for Parkinson?s Disease Monitoring by Image-Based Representation of Resting-State EEG Using Directional Connectivity

Emad Arasteh    
Ailar Mahdizadeh    
Maryam S. Mirian    
Soojin Lee and Martin J. McKeown    

Resumen

Parkinson?s disease (PD) is characterized by abnormal brain oscillations that can change rapidly. Tracking neural alternations with high temporal resolution electrophysiological monitoring methods such as EEG can lead to valuable information about alterations observed in PD. Concomitantly, there have been advances in the high-accuracy performance of deep neural networks (DNNs) using few-patient data. In this study, we propose a method to transform resting-state EEG data into a deep latent space to classify PD subjects from healthy cases. We first used a general orthogonalized directed coherence (gOPDC) method to compute directional connectivity (DC) between all pairwise EEG channels in four frequency bands (Theta, Alpha, Beta, and Gamma) and then converted the DC maps into 2D images. We then used the VGG-16 architecture (trained on the ImageNet dataset) as our pre-trained model, enlisted weights of convolutional layers as initial weights, and fine-tuned all layer weights with our data. After training, the classification achieved 99.62% accuracy, 100% precision, 99.17% recall, 0.9958 F1 score, and 0.9958 AUC averaged for 10 random repetitions of training/evaluating on the proposed deep transfer learning (DTL) network. Using the latent features learned by the network and employing LASSO regression, we found that latent features (as opposed to the raw DC values) were significantly correlated with five clinical indices routinely measured: left and right finger tapping, left and right tremor, and body bradykinesia. Our results demonstrate the power of transfer learning and latent space derivation for the development of oscillatory biomarkers in PD.

 Artículos similares

       
 
Wandile Nhlapho, Marcellin Atemkeng, Yusuf Brima and Jean-Claude Ndogmo    
The advent of deep learning (DL) has revolutionized medical imaging, offering unprecedented avenues for accurate disease classification and diagnosis. DL models have shown remarkable promise for classifying brain tumors from Magnetic Resonance Imaging (M... ver más
Revista: Information

 
Nan Lao Ywet, Aye Aye Maw, Tuan Anh Nguyen and Jae-Woo Lee    
Urban Air Mobility (UAM) emerges as a transformative approach to address urban congestion and pollution, offering efficient and sustainable transportation for people and goods. Central to UAM is the Operational Digital Twin (ODT), which plays a crucial r... ver más
Revista: Aerospace

 
Sarfaraz Natha, Umme Laila, Ibrahim Ahmed Gashim, Khalid Mahboob, Muhammad Noman Saeed and Khaled Mohammed Noaman    
Brain tumors (BT) represent a severe and potentially life-threatening cancer. Failing to promptly diagnose these tumors can significantly shorten a person?s life. Therefore, early and accurate detection of brain tumors is essential, allowing for appropri... ver más
Revista: Applied Sciences

 
Fabi Prezja, Leevi Annala, Sampsa Kiiskinen and Timo Ojala    
Diagnosing knee joint osteoarthritis (KOA), a major cause of disability worldwide, is challenging due to subtle radiographic indicators and the varied progression of the disease. Using deep learning for KOA diagnosis requires broad, comprehensive dataset... ver más
Revista: Algorithms

 
Seokjoon Kwon, Jae-Hyeon Park, Hee-Deok Jang, Hyunwoo Nam and Dong Eui Chang    
Deep learning algorithms are widely used for pattern recognition in electronic noses, which are sensor arrays for gas mixtures. One of the challenges of using electronic noses is sensor drift, which can degrade the accuracy of the system over time, even ... ver más
Revista: Applied Sciences