Redirigiendo al acceso original de articulo en 18 segundos...
Inicio  /  Water  /  Vol: 7 Par: 8 (2015)  /  Artículo
ARTÍCULO
TITULO

Uncertainty in Various Habitat Suitability Models and Its Impact on Habitat Suitability Estimates for Fish

Yu-Pin Lin    
Wei-Chih Lin and Wei-Yao Wu    

Resumen

Species distribution models (SDMs) are extensively used to project habitat suitability of species in stream ecological studies. Owing to complex sources of uncertainty, such models may yield projections with varying degrees of uncertainty. To better understand projected spatial distributions and the variability between habitat suitability projections, this study uses five SDMs that are based on the outputs of a two-dimensional hydraulic model to project the suitability of habitats and to evaluate the degree of variability originating from both differing model types and the split-sample procedure. The habitat suitability index (HSI) of each species is based on two stream flow variables, including current velocity (V), water depth (D), as well as the heterogeneity of these flow conditions as quantified by the information entropy of V and D. The six SDM approaches used to project fish abundance, as represented by HSI, included two stochastic models: the generalized linear model (GLM) and the generalized additive model (GAM); as well as three machine learning models: the support vector machine (SVM), random forest (RF) and the artificial neural network (ANN), and an ensemble model (where the latter is the average of the preceding five models). The target species Sicyopterus japonicas was found to prefer habitats with high current velocities. The relationship between mesohabitat diversity and fish abundance was indicated by the trends in information entropy and weighted usable area (WUA) over the study area. This study proposes a method for quantifying habitat suitability, and for assessing the uncertainties in HSI and WUA that are introduced by the various SDMs and samples. This study also demonstrated both the merits of the ensemble modeling approach and the necessity of addressing model uncertainty.

 Artículos similares

       
 
Karine Smith, Jaclyn M. H. Cockburn and Paul V. Villard    
Modeling in ice-covered rivers is limited due to added computational complexity, specifically challenges with the collection of field calibration data. Using River2D, a 2-dimensional hydrodynamic modeling software, this study simulates depth-averaged vel... ver más
Revista: Water

 
Oleg Artaev    
Climate change can have a significant impact on the Earth?s ecosystems. Invasive species will respond to climate change, and their responses will have ecological and economic implications. Habitat suitability models (HSMs) are some of the most important ... ver más
Revista: Water

 
Carina Juretzek, Andreas Müller, Ramona Eigenmann, Junio Fabrizio Borsani and Peter Sigray    
The Marine Strategy Framework Directive (MSFD) has been an important driver for progress in monitoring and assessment of impulsive underwater noise in the marine environment of the European Union. An important achievement of the MSFD implementation was t... ver más

 
Kimberly M. Meitzen, Clinton R. Robertson, Jennifer L. Jensen, Daniel J. Daugherty, Thomas B. Hardy and Kevin B. Mayes    
We developed a floodplain inundation model to extract specific flood extent and depth parameters and combined these with vegetation land cover and historic flow data to quantify spatial habitat suitability and temporal hydrologic metrics that support All... ver más
Revista: Hydrology

 
Aysha Akter, Md. Redwoan Toukir and Ahammed Dayem    
Revista: Hydrology