Redirigiendo al acceso original de articulo en 15 segundos...
Inicio  /  Buildings  /  Vol: 13 Par: 6 (2023)  /  Artículo
ARTÍCULO
TITULO

Experimental and Numerical Characterization of Non-Proprietary UHPFRC Beam?Parametric Analyses of Mechanical Properties

Younes Baghaei Osgouei    
Shahriar Tavousi Tafreshi and Masoud Pourbaba    

Resumen

Fabrication of ultra-high-performance concrete (UHPC) is costly, especially when commercial materials are used. Additionally, in contrast to conventional concrete, numerical procedures to simulate the behaviour of ultra-high-performance fibre-reinforced concrete (UHPFRC) are very limited. To contribute to the foregoing issues in this field, local materials were used in the fabrication process, while accounting for environmental issues and costs. Micro steel fibres (L" role="presentation">??L L : 13 mm, d" role="presentation">??d d : 0.16 mm, and ft:" role="presentation">????:ft: f t : 2600 MPa; L:" role="presentation">??:L: L : length, d" role="presentation">??d d : diameter, ft:" role="presentation">????:ft: f t : tensile strength) were used in 2% volumetric ratios. Compression and indirect tests were carried out on cylindrical and prismatic beams according to international standards. To further enrich the research and contribute to the limited simulation data on UHPFRC, and better comprehension of the parameters, numerical analyses were performed using the ATENA software. Finally, nonlinear regression analyses were employed to capture the deflection-flexural response of the beams. The results were promising, indicating cost-effective fabrication using local materials that met the minimum requirements of UHFRC in terms of compressive strength. Furthermore, inverse analysis proved to be an easy and efficient method for capturing the flexural response of UHPFRC beams.

 Artículos similares

       
 
Oscar Bermejo, Juan Manuel Gallardo, Adrian Sotillo, Arnau Altuna, Roberto Alonso and Andoni Puente    
Labyrinth seals are commonly used in turbomachinery in order to control leakage flows. Flutter is one of the most dangerous potential issues for them, leading to High Cycle Fatigue (HCF) life considerations or even mechanical failure. This phenomenon dep... ver más

 
Christian Lehr, Pascal Munsch, Romuald Skoda and Andreas Brümmer    
The acoustic properties of a single-stage centrifugal pump with low specific speed are investigated by means of compressible 3D CFD simulations (URANS) and experiments. In order to determine the pump?s acoustic transmission and excitation characteristics... ver más

 
Bicheng Zhou, Anatoly V. Brouchkov and Jiabo Hu    
Frost heaving in soils is a primary cause of engineering failures in cold regions. Although extensive experimental and numerical research has focused on the deformation caused by frost heaving, there is a notable lack of numerical investigations into the... ver más
Revista: Water

 
Dayana Carolina Chalá, Edgar Quiñones-Bolaños and Mehrab Mehrvar    
Land subsidence is a global challenge that enhances the vulnerability of aquifers where climate change and driving forces are occurring simultaneously. To comprehensively analyze this issue, integrated modeling tools are essential. This study advances th... ver más
Revista: Water

 
Alexander Hergt, Tobias Danninger, Joachim Klinner, Sebastian Grund, Manfred Beversdorff and Christian Werner-Spatz    
In this paper, an experimental and numerical investigation of the effect of leading-edge erosion in transonic blades was performed. The measurements were carried out on a linear blade cascade in the Transonic Cascade Wind Tunnel of DLR in Cologne at two ... ver más