Resumen
The main goal of this study was to obtain new results on the physically based future hydrological consequences of climate change in the Amur, Lena, and Selenga River basins by using data from an ensemble of global climate (general circulation) models (GCMs) as boundary conditions in spatially distributed, process-based runoff formation models. This approach provides a basis for a more detailed comparison of the sensitivity of hydrological systems of neighboring large river basins in Eastern Siberia and the Far East. The greatest increases in annual flow are predicted for the Lena River under Representative Concentration Pathway (RCP) 2.6 and RCP 6.0 by the middle and end of the 21st century and for the Selenga River under RCP 6.0 by the end of the 21st century, while the Amur flow anomalies are close to zero. During the 21st century, the greatest relative changes in river flow are predicted for the spring flood, especially for the Lena and Selenga, under both scenarios. The summer?autumn and winter runoff of the Amur River has a negative change of up to 8% for the two RCPs, and, on the contrary, the anomalies are positive for the Lena and Selenga. Evaluating runoff variations between RCPs, we noted high summer?autumn and winter runoff changes for the Amur River under RCP 6.0 for the future period, a significant increase in anomalies of the spring and winter runoff of the Lena under RCP 6.0 by the end of the 21st century, and a greater prevalence of summer?autumn and winter runoff increase for the Selenga River under RCP 2.6 during the 21st century, but it is especially pronounced by its end.