Redirigiendo al acceso original de articulo en 22 segundos...
Inicio  /  Applied Sciences  /  Vol: 14 Par: 2 (2024)  /  Artículo
ARTÍCULO
TITULO

The Construction and Application of a Deep Learning-Based Primary Support Deformation Prediction Model for Large Cross-Section Tunnels

Junling Zhang    
Min Mei    
Jun Wang    
Guangpeng Shang    
Xuefeng Hu    
Jing Yan and Qian Fang    

Resumen

The deformation of tunnel support structures during tunnel construction is influenced by geological factors, geometrical factors, support factors, and construction factors. Accurate prediction of tunnel support structure deformation is crucial for engineering safety and optimizing support parameters. Traditional methods for tunnel deformation prediction have often relied on numerical simulations and model experiments, which may not always meet the time-sensitive requirements. In this study, we propose a fusion deep neural network (FDNN) model that combines multiple algorithms with a complementary tunnel information encoding method. The FDNN model utilizes Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks to extract features related to tunnel structural deformation. FDNN model is used to predict deformations in the Capital Ring Expressway, and the predictions align well with monitoring results. To demonstrate the superiority of the proposed model, we use four different performance evaluation metrics to analyze the predictive performance of FDNN, DNN, XGBoost, Decision Tree Regression (DTR), and Random Forest Regression (RFR) methods. The results indicate that FDNN exhibits high precision and robustness. To assess the impact of different data types on the predictive results, we use tunnel geometry data as the base and combine geological, support, and construction data. The analysis reveals that models trained on datasets comprising all four data types perform the best. Geological parameters have the most significant impact on the predictive performance of all models. The findings of this research guide predicting tunnel construction parameters, particularly in the dynamic design of support parameters.

 Artículos similares

       
 
Farhan Ahmad, Sanket Rawat and Yixia Zhang    
Magnesium oxychloride cement (MOC), an alternative to ordinary Portland cement (OPC), has attracted increasing research interest for its excellent mechanical properties and its green and sustainable attributes. The poor water resistance of MOC limited it... ver más
Revista: Applied Sciences

 
Xin Wang, Deyou Liu, Ling Zhou and Chao Li    
The performance of wind turbines directly determines the profitability of wind farms. However, the complex environmental conditions and influences of various uncertain factors make it difficult to accurately assess and monitor the actual power generation... ver más
Revista: Applied Sciences

 
Jianying Wei, Yuming Liu, Xiaochun Lu, Yu Feng and Yadi Wang    
Tunnel construction projects are a classic type of repetitive project, and hold a crucial position in the construction industry. The linear scheduling method (LSM) has been in the spotlight in scheduling optimization for repetitive construction projects ... ver más
Revista: Applied Sciences

 
Carolina Ribeiro, Igor Fernandes and Filipe Portela    
In the age of Industry 4.0, competition between companies is becoming increasingly intense, and companies are turning to trends that aim to improve overall performance. Accordingly, the company ITEK decided to create a global gamification mechanism focus... ver más
Revista: Information

 
Sadiq Gbagba, Lorenzo Maccioni and Franco Concli    
In the shipbuilding, construction, automotive, and aerospace industries, welding is still a crucial manufacturing process because it can be utilized to create massive, intricate structures with exact dimensional specifications. These kinds of structures ... ver más
Revista: Applied Sciences