Redirigiendo al acceso original de articulo en 21 segundos...
Inicio  /  Applied Sciences  /  Vol: 9 Par: 21 (2019)  /  Artículo
ARTÍCULO
TITULO

Deep Neural Network Equalization for Optical Short Reach Communication

Maximilian Schaedler    
Christian Bluemm    
Maxim Kuschnerov    
Fabio Pittalà    
Stefano Calabrò and Stephan Pachnicke    

Resumen

Nonlinear distortion has always been a challenge for optical communication due to the nonlinear transfer characteristics of the fiber itself. The next frontier for optical communication is a second type of nonlinearities, which results from optical and electrical components. They become the dominant nonlinearity for shorter reaches. The highest data rates cannot be achieved without effective compensation. A classical countermeasure is receiver-side equalization of nonlinear impairments and memory effects using Volterra series. However, such Volterra equalizers are architecturally complex and their parametrization can be numerical unstable. This contribution proposes an alternative nonlinear equalizer architecture based on machine learning. Its performance is evaluated experimentally on coherent 88 Gbaud dual polarization 16QAM 600 Gb/s back-to-back measurements. The proposed equalizers outperform Volterra and memory polynomial Volterra equalizers up to 6th orders at a target bit-error rate (BER) of 10-2 10 - 2 by 0.5 dB and 0.8 dB in optical signal-to-noise ratio (OSNR), respectively.

 Artículos similares

       
 
Shubin Wang, Yuanyuan Chen and Zhang Yi    
Diabetic retinopathy is a prevalent eye disease that poses a potential risk of blindness. Nevertheless, due to the small size of diabetic retinopathy lesions and the high interclass similarity in terms of location, color, and shape among different lesion... ver más
Revista: Applied Sciences

 
Shubin Wang, Yuanyuan Chen and Zhang Yi    
The structure and function of retinal vessels play a crucial role in diagnosing and treating various ocular and systemic diseases. Therefore, the accurate segmentation of retinal vessels is of paramount importance to assist a clinical diagnosis. U-Net ha... ver más
Revista: Applied Sciences

 
Jingyi Hu, Junfeng Guo, Zhiyuan Rui and Zhiming Wang    
To solve the problem that noise seriously affects the online monitoring of parts signals of outdoor machinery, this paper proposes a signal reconstruction method integrating deep neural network and compression sensing, called ADMM-1DNet, and gives a deta... ver más
Revista: Applied Sciences

 
Alberto Alvarellos, Andrés Figuero, Santiago Rodríguez-Yáñez, José Sande, Enrique Peña, Paulo Rosa-Santos and Juan Rabuñal    
Port managers can use predictions of the wave overtopping predictors created in this work to take preventative measures and optimize operations, ultimately improving safety and helping to minimize the economic impact that overtopping events have on the p... ver más
Revista: Applied Sciences

 
Xiaojiao Gu, Yang Tian, Chi Li, Yonghe Wei and Dashuai Li    
The fault diagnosis method proposed in this paper can be applied to the diagnosis of bearings in machine tool spindle systems.
Revista: Applied Sciences