Redirigiendo al acceso original de articulo en 22 segundos...
Inicio  /  Applied Sciences  /  Vol: 13 Par: 20 (2023)  /  Artículo
ARTÍCULO
TITULO

Curved-Line Path-Following Control of Fixed-Wing Unmanned Aerial Vehicles Using a Robust Disturbance-Estimator-Based Predictive Control Approach

Weiwei Qi    
Mingbo Tong    
Qi Wang    
Wei Song and Hunan Ying    

Resumen

In this research, the design of a robust curved-line path-following control system for fixed-wing unmanned aerial vehicles (FWUAVs) affected by uncertainties on the latitude plane is studied. This is undertaken to enhance closed-loop system robustness under unknown uncertainties and derive the control surface deflection angle directly used to control FWUAVs, which has rarely been studied in previous works. The system is formed through the mass center position control (MCPC) and yaw angle control (YAC) subsystems. In the MCPC, the desired yaw angle, which is treated as the reference signal for the YAC subsystem, is calculated analytically using path-following errors, current flow angles, and the yaw angle. In the YAC, a disturbance estimator is designed to estimate uncertainties such as nonlinearities, couplings, time variations, model parameter perturbations, and unmodeled dynamics. Predictive functional controllers are designed to target nominal systems in the absence of uncertainties, such that the estimations of the uncertainties can be incorporated through feedback for closed-loop system robustness enhancement. The simulation results show that higher path-following precision and stronger robustness for the FWUAVs based on the proposed approach can be achieved using only rough model parameters compared with the conventional nonlinear dynamic inversion, which requires detailed model information.

 Artículos similares

       
 
Woo-Hyun Choi and Jongwon Kim    
Industrial control systems (ICSs) play a crucial role in managing and monitoring critical processes across various industries, such as manufacturing, energy, and water treatment. The connection of equipment from various manufacturers, complex communicati... ver más

 
Shoubo Shang, Xiangyu Wang, Qingnan Han, Peng Jia, Feihong Yun, Jing Wen, Chao Li, Ming Ju and Liquan Wang    
This paper proposes a version of the deep-sea environment simulated test system for subsea control modules to solve the problem of incomplete testing systems for electro-hydraulic subsea control modules. Based on the subsea control module test requiremen... ver más

 
Yuqi Yuan and Di Zhou    
Revista: Aerospace

 
José Azinheira, Reginaldo Carvalho, Ely Paiva and Rafael Cordeiro    
This paper proposes a new kind of airship actuator configuration for surveillance and environmental monitoring missions. We present the design and application of a six-propeller electrical airship (Noamini) with independent tilting propellers, allowing i... ver más
Revista: Aerospace

 
Ruichen He, Florian Holzapfel, Johannes Bröcker, Yi Lai and Shuguang Zhang    
The emergence of eVTOL (electrical Vertical Takeoff and Landing) aircraft necessitates the development of safe and efficient systems to meet stringent certification and operational requirements. The primary state-of-the-art technology for flight control ... ver más
Revista: Aerospace