Redirigiendo al acceso original de articulo en 21 segundos...
Inicio  /  Algorithms  /  Vol: 16 Par: 5 (2023)  /  Artículo
ARTÍCULO
TITULO

Neural Network Entropy (NNetEn): Entropy-Based EEG Signal and Chaotic Time Series Classification, Python Package for NNetEn Calculation

Andrei Velichko    
Maksim Belyaev    
Yuriy Izotov    
Murugappan Murugappan and Hanif Heidari    

Resumen

Entropy measures are effective features for time series classification problems. Traditional entropy measures, such as Shannon entropy, use probability distribution function. However, for the effective separation of time series, new entropy estimation methods are required to characterize the chaotic dynamic of the system. Our concept of Neural Network Entropy (NNetEn) is based on the classification of special datasets in relation to the entropy of the time series recorded in the reservoir of the neural network. NNetEn estimates the chaotic dynamics of time series in an original way and does not take into account probability distribution functions. We propose two new classification metrics: R2 Efficiency and Pearson Efficiency. The efficiency of NNetEn is verified on separation of two chaotic time series of sine mapping using dispersion analysis. For two close dynamic time series (r = 1.1918 and r = 1.2243), the F-ratio has reached the value of 124 and reflects high efficiency of the introduced method in classification problems. The electroencephalography signal classification for healthy persons and patients with Alzheimer disease illustrates the practical application of the NNetEn features. Our computations demonstrate the synergistic effect of increasing classification accuracy when applying traditional entropy measures and the NNetEn concept conjointly. An implementation of the algorithms in Python is presented.

 Artículos similares

       
 
Angel E. Muñoz-Zavala, Jorge E. Macías-Díaz, Daniel Alba-Cuéllar and José A. Guerrero-Díaz-de-León    
This paper reviews the application of artificial neural network (ANN) models to time series prediction tasks. We begin by briefly introducing some basic concepts and terms related to time series analysis, and by outlining some of the most popular ANN arc... ver más
Revista: Algorithms

 
Mojtaba Nayyeri, Modjtaba Rouhani, Hadi Sadoghi Yazdi, Marko M. Mäkelä, Alaleh Maskooki and Yury Nikulin    
One of the main disadvantages of the traditional mean square error (MSE)-based constructive networks is their poor performance in the presence of non-Gaussian noises. In this paper, we propose a new incremental constructive network based on the correntro... ver más
Revista: Algorithms

 
Varsha S. Lalapura, Veerender Reddy Bhimavarapu, J. Amudha and Hariram Selvamurugan Satheesh    
The Recurrent Neural Networks (RNNs) are an essential class of supervised learning algorithms. Complex tasks like speech recognition, machine translation, sentiment classification, weather prediction, etc., are now performed by well-trained RNNs. Local o... ver más
Revista: Algorithms

 
Stanislav Kirpichenko, Lev Utkin, Andrei Konstantinov and Vladimir Muliukha    
A method for estimating the conditional average treatment effect under the condition of censored time-to-event data, called BENK (the Beran Estimator with Neural Kernels), is proposed. The main idea behind the method is to apply the Beran estimator for e... ver más
Revista: Algorithms

 
Ivan S. Maksymov    
Ambiguous optical illusions have been a paradigmatic object of fascination, research and inspiration in arts, psychology and video games. However, accurate computational models of perception of ambiguous figures have been elusive. In this paper, we desig... ver más
Revista: Algorithms