Redirigiendo al acceso original de articulo en 20 segundos...
ARTÍCULO
TITULO

A Fast Algorithm for the Prediction of Ship-Bank Interaction in Shallow Water

Jin Huang    
Chen Xu    
Ping Xin    
Xueqian Zhou    
Serge Sutulo and Carlos Guedes Soares    

Resumen

The hydrodynamic interaction induced by the complex flow around a ship maneuvering in restricted waters has a significant influence on navigation safety. In particular, when a ship moves in the vicinity of a bank, the hydrodynamic interaction forces caused by the bank effect can significantly affect the ship?s maneuverability. An efficient algorithm integrated in onboard systems or simulators for capturing the bank effect with fair accuracy would benefit navigation safety. In this study, an algorithm based on the potential-flow theory is presented for efficient calculation of ship-bank hydrodynamic interaction forces. Under the low Froude number assumption, the free surface boundary condition is approximated using the double-body model. A layer of sources is dynamically distributed on part of the seabed and bank in the vicinity of the ship to model the boundary conditions. The sinkage and trim are iteratively solved via hydrostatic balance, and the importance of including sinkage and trim is investigated. To validate the numerical method, a series of simulations with various configurations are carried out, and the results are compared with experiment and numerical results obtained with RANSE-based and Rankine source methods. The comparison and analysis show the accuracy of the method proposed in this paper satisfactory except for extreme shallow water cases.

 Artículos similares

       
 
Xin Liao and Khoi D. Hoang    
Distributed Constraint Optimization Problems (DCOPs) are an efficient framework widely used in multi-agent collaborative modeling. The traditional DCOP framework assumes that variables are discrete and constraint utilities are represented in tabular form... ver más
Revista: Applied Sciences

 
Kenneth Lange    
The current paper proposes and tests algorithms for finding the diameter of a compact convex set and the farthest point in the set to another point. For these two nonconvex problems, I construct Frank?Wolfe and projected gradient ascent algorithms. Altho... ver más
Revista: Algorithms

 
Giorgio Lazzarinetti, Riccardo Dondi, Sara Manzoni and Italo Zoppis    
Solving combinatorial problems on complex networks represents a primary issue which, on a large scale, requires the use of heuristics and approximate algorithms. Recently, neural methods have been proposed in this context to find feasible solutions for r... ver más
Revista: Algorithms

 
Zhengbao Li, Jianfeng Dai, Yuanxin Luan, Nan Sun and Libin Du    
Human marine activities are becoming increasingly frequent. The adverse marine environment has led to an increase in man overboard incidents, resulting in significant losses of life and property. After a drowning accident, the accurate location informati... ver más
Revista: Applied Sciences

 
Tianhao Gao, Meng Zhang, Yifan Zhu, Youjian Zhang, Xiangsheng Pang, Jing Ying and Wenming Liu    
Classifying sports videos is complex due to their dynamic nature. Traditional methods, like optical flow and the Histogram of Oriented Gradient (HOG), are limited by their need for expertise and lack of universality. Deep learning, particularly Convoluti... ver más
Revista: Applied Sciences