Redirigiendo al acceso original de articulo en 24 segundos...
Inicio  /  Agriculture  /  Vol: 14 Par: 1 (2024)  /  Artículo
ARTÍCULO
TITULO

Experimental Study on Impact Friction Damage of Sweet Potato Skin

Wanzhi Zhang    
Yunzhen Qu    
Xiubo Yin    
Hongjuan Liu    
Guizhi Mu and Dengshan Li    

Resumen

Sweet potato skin is prone to friction damage during mechanical harvesting. To reveal the friction damage mechanism of sweet potato skin, the impact friction process between a sweet potato and a rod was theoretically analyzed. The main factors affecting the impact friction force of the sweet potato skin include the sweet potato mass, drop height, distance from the center of the pendulum to the impact center of the sweet potato, maximum elastic displacement of the sweet potato, collision contact time, curvature radius of the sweet potato collision surface, material and roughness of the collision contact surface, etc. The mass, drop height, rod direction, rod state, and rod material of the sweet potato were used as the test factors, and the critical damage acceleration of the sweet potato skin was used as the test evaluation index. The results showed that the friction force caused by the collision between the sweet potato skin and rod increased with the increase in the sweet potato mass. The minimum friction is 3.5 N. The critical damage acceleration of the sweet potato skin decreased with the increase in the sweet potato mass, and the drop height had no significant effect on the critical damage acceleration of the sweet potato skin. Compared with the vertical placement, the critical damage acceleration of the sweet potato skin was smaller when the rod was placed horizontally, and the damage was more likely to occur. Under the same conditions, the critical damage acceleration of the sweet potato skin when the rod is rolling is greater than that when the rod is fixed. The critical damage acceleration of the impact friction between the sweet potato and 65Mn rod is the smallest, and the critical damage acceleration of the impact friction with the 65Mn?leather rod is the largest.

 Artículos similares

       
 
Au?ra Rudinskiene, Au?ra Marcinkeviciene, Rimantas Velicka and Vaida Steponaviciene    
The scientific aim of this article is to investigate the potential benefits of implementing a multi-cropping system, specifically focusing on the incorporation of caraway, to improve soil agrochemical and biological properties, prevent soil degradation a... ver más
Revista: Agronomy

 
Xiaofeng Liang, Hong Wang, Yudan Zhang, Rui Yang, Dongdong Zhang, Wanlai Zhou, Zhiyong Qi and Wei Lin    
Peat-based substrates have been widely used in greenhouse vegetable production (GVP). However, peat is a non-renewable resource, and there is a problem with N2O emissions when it is used in greenhouse vegetable production due to the application of large ... ver más
Revista: Agronomy

 
Ding Zhou, Hui Wang, Xiangxiang Wang, Fangfang Wang, Jiabao Zhang and Donghao Ma    
To apply AquaCrop to the study of agricultural soil moisture in the North China Plain, a water-treatment experiment on summer maize was carried out at the Fengqiu experimental station of the Chinese Academy of Sciences from 2017 to 2018. A water treatmen... ver más
Revista: Agronomy

 
Yaoqiang Pan, Xvlin Xiao, Kewei Hu, Hanwen Kang, Yangwen Jin, Yan Chen and Xiangjun Zou    
In an unmanned orchard, various tasks such as seeding, irrigation, health monitoring, and harvesting of crops are carried out by unmanned vehicles. These vehicles need to be able to distinguish which objects are fruit trees and which are not, rather than... ver más
Revista: Agronomy

 
Chao Xu, Yuting Wang, Huidong Yang, Yuqing Tang, Xincheng Liu, Buchun Liu, Xinlong Hu and Zhongdong Hu    
High temperatures significantly injure the flowering, pollination, fruit growth, and quality of plants. Photosynthesis, the fundamental process supporting plant life, is crucial. Nevertheless, the quantitative evaluation of the physiological activity of ... ver más
Revista: Agronomy