Redirigiendo al acceso original de articulo en 23 segundos...
Inicio  /  Applied Sciences  /  Vol: 13 Par: 21 (2023)  /  Artículo
ARTÍCULO
TITULO

Individualized Stress Mobile Sensing Using Self-Supervised Pre-Training

Tanvir Islam and Peter Washington    

Resumen

Stress is widely recognized as a major contributor to a variety of health issues. Stress prediction using biosignal data recorded by wearables is a key area of study in mobile sensing research because real-time stress prediction can enable digital interventions to immediately react at the onset of stress, helping to avoid many psychological and physiological symptoms such as heart rhythm irregularities. Electrodermal activity (EDA) is often used to measure stress. However, major challenges with the prediction of stress using machine learning include the subjectivity and sparseness of the labels, a large feature space, relatively few labels, and a complex nonlinear and subjective relationship between the features and outcomes. To tackle these issues, we examined the use of model personalization: training a separate stress prediction model for each user. To allow the neural network to learn the temporal dynamics of each individual?s baseline biosignal patterns, thus enabling personalization with very few labels, we pre-trained a one-dimensional convolutional neural network (1D CNN) using self-supervised learning (SSL). We evaluated our method using the Wearable Stress and Affect Detection(WESAD) dataset. We fine-tuned the pre-trained networks to the stress-prediction task and compared against equivalent models without any self-supervised pre-training. We discovered that embeddings learned using our pre-training method outperformed the supervised baselines with significantly fewer labeled data points: the models trained with SSL required less than 30% of the labels to reach equivalent performance without personalized SSL. This personalized learning method can enable precision health systems that are tailored to each subject and require few annotations by the end user, thus allowing for the mobile sensing of increasingly complex, heterogeneous, and subjective outcomes such as stress.

 Artículos similares

       
 
Juan Murillo-Morera, Carlos Castro-Herrera, Javier Arroyo, Ruben Fuentes-Fernandez     Pág. 114 - 137
Today, it is common for software projects to collect measurement data through development processes. With these data, defect prediction software can try to estimate the defect proneness of a software module, with the objective of assisting and guiding so... ver más

 
Yunfei Yang, Zhicheng Zhang, Jiapeng Zhao, Bin Zhang, Lei Zhang, Qi Hu and Jianglong Sun    
Resistance serves as a critical performance metric for ships. Swift and accurate resistance prediction can enhance ship design efficiency. Currently, methods for determining ship resistance encompass model tests, estimation techniques, and computational ... ver más

 
Chih-Chiang Wei and Cheng-Shu Chiang    
In recent years, Taiwan has actively pursued the development of renewable energy, with offshore wind power assessments indicating that 80% of the world?s best wind fields are located in the western seas of Taiwan. The aim of this study is to maximize off... ver más

 
Ho-Jun Yoo, Hyoseob Kim, Tae-Soon Kang, Ki-Hyun Kim, Ki-Young Bang, Jong-Beom Kim and Moon-Sang Park    
Coastal erosion is caused by various factors, such as harbor development along coastal areas and climate change. Erosion has been accelerated recently due to sea level rises, increased occurrence of swells, and higher-power storm waves. Proper understand... ver más

 
Sipho G. Thango, Georgios A. Drosopoulos, Siphesihle M. Motsa and Georgios E. Stavroulakis    
A methodology to predict key aspects of the structural response of masonry walls under blast loading using artificial neural networks (ANN) is presented in this paper. The failure patterns of masonry walls due to in and out-of-plane loading are complex d... ver más
Revista: Infrastructures