Redirigiendo al acceso original de articulo en 21 segundos...
Inicio  /  Infrastructures  /  Vol: 4 Par: 4 (2019)  /  Artículo
ARTÍCULO
TITULO

Comparative Study of Seismic Design and Performance of OMRF Building Using Indian, British, and European Codes

Anupoju Rajeev    
Naveen Kumar Meena and Kumar Pallav    

Resumen

In India, damage cause by some major earthquakes, such as India/Nepal 2015, Sikkim 2011, Kashmir 2005, Bhuj 2001, Latur 1993, and Uttarkashi 1991, have raised alarms to professionals. The probability of seismic risk is higher in more densely populated Indian cities, such as Bhuj, Kashmir, Sikkim, Uttarkashi, as they come under the highest seismicity zone in India. Therefore, our primary interest is to investigate the seismic performance evaluation of the buildings in these seismic prone areas. Significant research has been conducted on the seismic performance of existing buildings. However, investigations on the seismic performance of a building with different country codes for the same earthquake event has not been explored, which is crucial in providing a deeper knowledge of the seismic performance of buildings. This paper presents a comparative study of an Ordinary Moment Resistant Frame (OMRF) building designed using three major codes, Indian (IS: 456-2000, IS: 1893-2002), British (BS: 8110-1997) and European (EC-2, EC-8). Six typical building models considered with earthquake (WiEQ), and without earthquake (WoEQ), and their assessments were interpreted using non-linear static analysis for determining their seismic performance. Seismic performance is compared in terms of base shear coefficient (BSC) and drift ratio that shows WiEQ models, at the drift ratio of 1.5%, the BSC was as follows; 0.78, 0.88, and 0.96 for the models designed for British, Euro, and Indian codes, respectively. The results show that the building models, that have been designed for the Indian codal provisions for both cases, performed well as compared to the other country codes. Base shear and drift ratio are the vital parameters that vary considerably among the building models. This aspect of the Indian code makes it a safer design methodology with higher reserve strength and a reasonably good displacement capacity before reaching the Collapse Prevention (CP) performance level.

 Artículos similares

       
 
Enrique González-Núñez, Luis A. Trejo and Michael Kampouridis    
This research aims at applying the Artificial Organic Network (AON), a nature-inspired, supervised, metaheuristic machine learning framework, to develop a new algorithm based on this machine learning class. The focus of the new algorithm is to model and ... ver más

 
Thanda Shwe and Masayoshi Aritsugi    
Intelligent applications in several areas increasingly rely on big data solutions to improve their efficiency, but the processing and management of big data incur high costs. Although cloud-computing-based big data management and processing offer a promi... ver más
Revista: Applied Sciences

 
Muhammad Tayyab, Rana Ammar Aslam, Umar Farooq, Sikandar Ali, Shahbaz Nasir Khan, Mazhar Iqbal, Muhammad Imran Khan and Naeem Saddique    
Groundwater Arsenic (As) data are often sparse and location-specific, making them insufficient to represent the heterogeneity in groundwater quality status at unsampled locations. Interpolation techniques have been used to map groundwater As data at unsa... ver más
Revista: Water

 
Xiaoyun Song, Heping Zheng, Lei Xu, Tingting Xu and Qiuyu Li    
An investigation was carried out to study the influence of two types of anti-washout admixtures (AWAs) on the performance of underwater concrete, specifically, workability and washout resistance. The tested AWAs were hydroxypropyl methylcellulose (HPMC) ... ver más
Revista: Buildings

 
Tahsin Koroglu and Elanur Ekici    
In recent years, wind energy has become remarkably popular among renewable energy sources due to its low installation costs and easy maintenance. Having high energy potential is of great importance in the selection of regions where wind energy investment... ver más
Revista: Applied Sciences