Redirigiendo al acceso original de articulo en 18 segundos...
Inicio  /  Hydrology  /  Vol: 7 Par: 4 (2020)  /  Artículo
ARTÍCULO
TITULO

Assessment of Climate Change Impacts on River Flow Regimes in the Upstream of Awash Basin, Ethiopia: Based on IPCC Fifth Assessment Report (AR5) Climate Change Scenarios

Mekonnen H. Daba and Songcai You    

Resumen

The Awash River Basin is the most irrigated area in Ethiopia, which is facing critical water resources problems. The main objective of this study was to assess the impacts of climate change on river flows in the upper Awash Subbasin, Ethiopia, using the soil and water assessment tool (SWAT) hydrological model. The ensemble of two global climate models (CSIRO-Mk3-6-0 and MIROC-ESM-CHEM with RCP4.5 and RCP8.5) for climate data projections (the 2020s, 2050s, and 2080s) and historical climate data from 1981?2010 was considered. Bias-corrections were made for both the GCM data. SWAT model was calibrated and validated to simulate future hydrologic variables in response to changes in rainfall and temperature. The results showed that the projected climate change scenarios were an increase in rainfall for the period of the 2020s but reduced for the periods of 2050s and 2080s. The annual mean temperature increases, ranging from 0.5 to 0.9 °C under RCP4.5 and 0.6 to 1.2 °C under RCP8.5 for all time slices. In the 2020s, annual mean rainfall increases by 5.77% under RCP4.5 and 7.80% under RCP8.5, while in 2050s and 2080s time slices, rainfall decrements range from 3.31 to 9.87% under RCP4.5 and 6.80 to 16.22% under RCP8.5. The change in rainfall and temperature probably leads to increases in the annual streamflow by 5.79% for RCP4.5 and 7.20% for RCP8.5 in the 2020s, whereas decreases by 10.39% and 11.45% under RCP4.5; and 10.79% and -12.38% for RCP8.5 in 2050s and 2080s, respectively. Similarly, in the 2020s, an increment of annual runoff was 10.73% for RCP4.5 and 12.08% for RCP8.5. Runoff reduces by 12.03% and 4.12% under RCP4.5; and 12.65% and 5.31% under RCP8.5 in the 2050s and the 2080s, respectively. Overall, the results revealed that changes in rainfall and temperature would have significant impacts on the streamflow and surface runoff, causing a possible reduction in the total water availability in the subbasin. This study provides useful information for future water resource planning and management in the face of climate change in the upper Awash River basin.

Palabras claves

 Artículos similares

       
 
Amin Habibi and Nafise Kahe    
This study investigates how permeable and cool pavements, green roofs, and living walls affect microclimatic conditions and buildings? energy consumption in an arid urban setting: Shiraz. The study aims to evaluate the role of green infrastructure in mit... ver más
Revista: Buildings

 
Jhon B. Valencia, Vladimir V. Guryanov, Jeison Mesa-Diez, Nilton Diaz, Daniel Escobar-Carbonari and Artyom V. Gusarov    
This paper presents a hydrological assessment of the 113,981 km2 Meta River basin in Colombia using 13 global climate models to predict water yield for 2050 under two CMIP6 scenarios, SSP 4.5 and SSP 8.5. Despite mixed performance across subbasins, the m... ver más
Revista: Hydrology

 
Md. Khairul Hasan, Mohamed Rasmy, Toshio Koike and Katsunori Tamakawa    
The Sangu River basin significantly contributes to national economy significantly; however, exposures to water-related hazards are frequent. As it is expected that water-related disasters will increase manifold in the future due to global warming, the Go... ver más
Revista: Water

 
Gerardo Colín-García, Enrique Palacios-Vélez, Adolfo López-Pérez, Martín Alejandro Bolaños-González, Héctor Flores-Magdaleno, Roberto Ascencio-Hernández and Enrique Inoscencio Canales-Islas    
Assessing the impact of climate change is essential for developing water resource management plans, especially in areas facing severe issues regarding ecosystem service degradation. This study assessed the effects of climate change on the hydrological ba... ver más
Revista: Hydrology

 
Artem Marchenko, Rolands Kromanis and André G. Dorée    
Temperature is the main driver of bridge response. It is continuously applied and may have complex distributions across the bridge. Daily temperature loads force bridges to undergo deformations that are larger than or equal to peak-to-peak traffic loads.... ver más
Revista: Infrastructures